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a strict stationary response. The general trend of the nonlinear interaction takes the form of energy
exchange between the interacted modes when the system is internally tuned. In the case of three-mode
interactions complex response characteristics are predicted in the form of multiple solutions and jump
phenomenon in & stochastic sense.

The experimental investigation is carried out on a two-degree-of-freedom model whose analytical
solution is known. When the first normal mode is externally excited by a band-limited random excitation
the system mean square response is found to be linearly proportional to the excitation spectral density
up to a certain level above which the two normal modes exhibit discontinuity mainly governed by the
internal detuning and the system damping ratios. These response characteristics are changed when the
second normal mode is externally excited. Under lower levels of excitation spectral density the response
is dominated by the second normal mode. When the excitation level increases the first normal mode
attends and interacts nonlinearly with the second mode in a form of energy exchange.

These investigations do not take into account the interaction between the aerodynamic forces on
one hand and the elastic and inertia forces on the other hand. The interaction with random aerodynamic
forces establishes the system nonlinear flutter and constitutes the second phase of this research project.
A new proposal for the second phase has been submitted to AFOSR for another three years support.
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ABSTRACT

" The linear and nonlinear nodal interactions in aeroelatic structures under wide band random exci-

tation are examined analytically and experimentally. The analytical investigation deals with the random

response characteristics of two- and three-degree-of-freedom nonlinear models in the neighborhood of in-

ternal resonance conditions. These conditions take the form of linear relationships between the normal

mode frequencies and are established from the linear modal analysis of each model. The Fokker-Planck

equation approach is used to derive a general differential equation for the response joint moments. In

view of the models nonlinearity the differential equation is found to constitute a set of infinite coupled

first order differential equations. These equations are closed by using two different truncation schemes

which are based on the properties of response joint cumulants. These two schemes are known as Gaus-

sian and non-Gaussian closures. The analytical manipulations are performed by using the computer

algebraic software MACSYMA, while the response statistical moments are determined by numerical

integration by using the IMSL software DVERK. The Gaussian closure solution gives a quasi-stationary

response in the form of fluctuations between two limits. However, the non-Gaussian closure results in

a strict stationary response. The general trend of the nonlinear interaction takes the form of energy

exchange between the interacted modes when the system is internally tuned. In the case of three-mode

interactions complex response characteristics are predicted in the form of multiple solutions and jump

phenomenon in a stochastic sense.

The experimental investigation is carried out on a two-degree-of-freedom model whose analytical

solution is known. When the first normal mode is externally excited by a band-limited random excitation

the system mean square response is found to be linearly proportional to the excitation spectral density

up to a certain level above which the two normal modes exhibit discontinuity mainly governed by the

internal detuning and the system damping ratios. These response characteristics are changed when the

second normal mode is externally excited. Under lower levels of excitation spectral density the response

is dominated by the second normal mode. When the excitation level increases the first normal mode

attends and interacts nonlinearly with the second mode in a form of energy exchange.

These investigations do not take into account the interaction between the aerodynamic forces on

one hand and the elastic and inertia forces on the other hand. The interaction with random aerodynamic

forces establishes the system nonlinear flutter and constitutes the second phase of this research project.

A new proposal for the second phase has been submitted to AFOSR for another three years support.



SUMMARY OF MAIN RESULTS

1. Introduction

In an effort to understand the dynamic behavior of nonlinear aeroelatic structures under random exci-

tations a research project combines analytical and experimental investigatione has been supported by

the Air Force Office of Scientific Research. Based on the original proposal (February 1983) and its

amendment (July 1984) three main objectives are considered. These are:

1. To investigate the autoparametric interaction in aeroelsatic structures subjected

to wide band random excitation. Aatopearmetric interaeton usually occurs if the

normal mode frequencies of the structure are commensurate (i.e. the normal mode

frequencies are governed by an algebraic relationship known as internal resonance.

2. To investigate the effects of damping and stiffness random fluctuations in the ab-

sence and in the presence of internal resonance.

3. To conduct an experimental investigation with the purpose of understanding com-

plex response characteristics and verifying the validity of theoretical results. The

experimental investigation is very valuable in demonstrating how the normal modes

are interacting under random excitations.

This report provides a brief summary of the main results of this research project during three- year

period. The complete results are published in technical papers and presented at ASME, AIAA, IMAC.

and international meetings. Various aspects of the research project are well documented in two Ph.D.

dissertations and two Masters theses. Reprints of the technical papers are attached.

IL ANALYTICAL INVESTIGATION

II1. Two-Mode Interaction

The linear and nonlinear random modal interactions in two-degree-of-freedom aeroelastic structural

model are examined by using the Fokker-Planck equation approach together with two truncation schemes

known as Gaussian and non-Gaussian closures. A general differential equation describing the evolution

of the response statistical moments is derived for any moment order. For the case of linear modal

interaction this differential equation is found to be consistent (i.e. the number of unknowns is equal

to the number of the generated equations). The stationary response is determined for various system
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parameters. It is found that the linear interaction results in a suppression of one mode when the

uncoupled frequencies of the structure are close to each other. For the case of nonlinear modal interaction

(known as autoparametric coupling) the differential equation of the response moments forms an infinite

coupled set of first order differential equations which are closed by Gaussian and non-Gaussian closure

schemes. The Gaussian closure is known to be less accurate since it does not take into account the effect of

the response non-normality. The Gaussian closure scheme yields 14 coupled differential equations in the

first and second order moments of the response coordinates, while the non-Gaussian closure leads to 69

differential equations in the first through fourth order moments. The two sets of differential equations are

solved by numerical integration by using the IMSL (International Mathematical and Statistical Library)

subroutine DVERK (Runge-Kutta-Verner fifth and sixth numerical integration method). Both solutions

are presented in the time and internal frequency domains. The solutions exhibit common features such

as energy exchange between the two normal modes in the neighborhood of internal tuning. The Gaussian

solution gives a quasi-stationary response in the form of fluctuations between two limits. However. the

non-Gaussian solution results in a strict stationary response. The influence of random fluctuations in

the system damping on the response mean squares is found to be very small. The stiffness random

variation, however, shows to have a pronounced effect on the response mean squares.

11.2 Three-Mode Interaction

The linear and autoparametric modal interactions in a three-degree-of-freedom structural model suh-

jected to wide band random excitation are examined by using the same approach described in ecr ion

11.1. For a structure with constant parameters the linear response is obtained in a closed form. When

the structure stiffness matrix involves random components the linear equations of motion, in terms of

principal coordinates, are coupled through parametric terms. The response is found to be governed by

the condition of mean square stability. The boundary of stable-unstable responses is obtained as a func-

tion of the internal detuning parameter. The results of the linear system with constant coefficients are

used as a reference to measure the deviation of the system response when the nonlinear inertia coupling

is included. Four possible internal resonance conditions are derived. These are:

i. Combination internal resonance

W3 = W1 + W2

ii. Principal internal resonance between the first and second modes

w2 = 2wi

3



iii. Principal internal resonance between the first and third modes

W3 = 2w,

iv. Principal internal resonance between the second and third modes

w3 = 2-2

In the neighborhhood of combination internal resonance the Gaussian closure results in 27 differential

equations while the non-Gaussian closure yields 209 differential equations in the response joint moments.

The Gaussian solution exhibits two normal mode interaction when the condition of combination reso-

nance is slightly shifted. This unexpected result is scrutinized and it is found that the system possesses

principal internal resonance between the second and third modes when the three modes are not exactly

tuned according to condition (i). The non-Gaussian solution successfully predicts three-mode interaction

in the neighborhood of combination internal resonance. The autoparametric interaction occurs among

the three modes in such a manner that the mean square of the first two normal modes is always greater

than the linear solution while it is less for the third mode. This means that the nonlinear interaction

takes place between the first and second modes on one hand and the third mode on the other hand. A

new feature of considerable interest is the contrast in the form of the mean square response curves above

the exact internal detuning for a certain combination of system parameters and excitation level. This

is indicated by multiple solutions over a finite portion of internal detuning. The well-known saturation

phenomenon which usually occurs in deterministic systems with quadratic nonlinear coupling does not

take place in the present case since the excitation is random and includes a wide range of frequencies

which always excite the system normal modes.

For the case of principal internal resonances it is found that the response statistics are sensitive to small

excitation levels when the third and second modes are internally tune, ilowever, the autoparanietric

interaction is found to be only sensitive to a relatively high excitation spectral density under conditions

(ii) and (iii). The stochastic interaction of the three cases is characterized by irregular energy exchange

between the interacted modes.

III. EXPERIMENTAL INVESTIGATION

A series of experimental tests are conducted on a two-degree-of-freedom elastic model. The model is

subjected to a band-limited random excitation whose central frequency is very close to one of the two

normal mode frequencies of the model. The band width is selected such that no other higher modes are
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excited. The model normal mode frequencies are adjusted to have the ratio 2:1. This ratio is equivalent

to the condition of internal resonance of the analytical model. When the first normal mode is externally

excited the system mean square response is found to be linearly proportional to the excitation spectral

density up to a certain level above whi'" the two normal modes exhibit discontinuity. The observedl

discontinuity is mainly governed by the internal detuning parameter and the system damping ratios

The results are completely different when the second normal mode is externally excited. For small levels

of excitation spectral density the response is dominated by the second normal mode. Under highe~r

excitation levels the first normal mode attends and interacts nonlinearly with the second inode.

The measured results reveal some deviations from the predicted results. The deviation is mainly at-

tributed to the fact that the experimental e"citation is band-limited random excitation while it is as-

sumed wide band in theory. Experimentally it was not appropriate to apply wide band random excitation

which will excite higher modes not considered in the mathematical model. Another source of the devi-

ation occurs in the process of transformation into principal coordinates. In theory the transformatioin

is performed based on conservative linear system and a diagonal linear damping is introduced after

transformation.

WV. NEW RESEARCH DIRECTIONS

The work accomplished during this period did not include the interaction of aerodynaic forces wit li

elastic and inertia forces. This interaction accurately models the stochastic nonlinear nlutter which hias

not been examined in the open literature. Although the results obtained from this research project

are new and essential in providing more understanding to the response of nonlinear dynamic systems to

random excitations, it is very important to examine the effects of nonlinear interaction with aerodynamric

forces. A new proposal for three years support has been submitted to the AFOSR. The new Proposal

will examine the nonlinear stochastic flutter in subsonic and supersonic flight regimes for two basic

models: a cantilever wing and a flat panel. The effect of Mach number on the response mean squares

in the neighborhood of internal resonance will be determined. The analysis will be Performed by Using

the computer algebraic manipulation software MACSYMA on SUN 3/260 computer at the Nonlinear

Vibration Labaratory of Wayne State University.
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Reprinted from October 1966. Vol. 108. Journal of Vibration. Stress, and Reliability in Design

Autoparametric Vibration of
R.A.,brahi Coupled Beams Under Random

M Support Motion
H. Hue The dynamic response of a two degree-of-freedom system with autoparametricH coupling to a wide band random exttion is investigated. The analytical modeling

auate Student includes quadratic nonlinearity, and a general first-order d~fferential equation of the
moments of any order is derived. It is found that the moment equations form an in-

Tea Tech Unfiversly. finite hierarchy set which is closed uia two different closure methods. These are the
Oatiaimmt of Macnnieci Eiripmer. Gaussian closure and the non-Gaussian losre schemes. The Gaussian closure so/u-

Lubock. TX ?9409 tion shows that the system doe not reach a stationary response while the non-
Gaussian closure solution gives a complete stationary steady-state response. In both
cum, the response is obtained in the neghborhood of the autoparametric internal
resonance condition for various system parameters.

lmtroduetioe

The pape. deals with the autoparametric random response tions about the lint cycle solution. The excitation was
of a system of coupled beams to a random support motion, represented by a random field. The panel motion was de-
The system resembles an analytical model of aeroelastic struc- scribed by a coupled set of linear nonhomogeneous differen-
tures such as aircraft wing with fuel storage. The study of ran- tial equations with harmonic coefficients. The study was ex-
dom response of aeroelastic structures has frequently been tended to determine the response of the panel under nonlinear
considered within the framework of linear coupling between aerodynamic loading in the absence of any random compo-
two or more degrees of freedom. It involves the combination nent. Two mechanisms were considered. The first is the
of structural dynamics and the theory of stochastic processes. nonlinear interaction between in-plane panel stresses and
The lines modeling gives the response of the system in the transverse transformation. This interaction provides a stabiliz-
neitborhood of the equilibrium position. However. complex ing influence on the panel in that it acts to restrain further
response characteristics such as multiple solutions, jump deformation. The second is the nonlinear aerodynmic loading
phenomenon, internal resonance, and limit cycles can only be which has a destabilizing effect.
predicted if the inherent nonlinearties of the system are Nonlineasrites may enter the vibrating system through
considered. geometric or physical sources. The geometric nonlinearities

The flutter problem of two- and three-dimensional plates are identified by large deformation. Physical nonlinearities
undergoing limit cycle oscillations in a high supersonic flow arise from the nonlinear nature of the physical properties of
was examined by Dowell I 1. The nonlinear membrane forces the material itself. These nonlineinties appear in the equa-
induced by the plate motion resulted in bounded plate tions of motion in three possible forms: elastic, inertia and
amplitude. In a series of investigations 12-41. Dzygadlo damping nonlineatities. Elastic nonlinearity stems from
analyzed the coupled parametric and self-excited (flutter) nonlinear strain displacement relations which are inevitable.
vibrations of plates subjected to periodic varying in-plane Inertial nonlinearity are derived, in a Lagrangian formulation.
forces. In supersonic gas flow, it was found that the instability from the kinetic energy. A general and fairly comprehensive
region of the harmnic resonance shrinks and shifts toward description of the role of nonlinear modal interaction under
higher e citation frequencies and amplitudes as the Mach harmon excitation was given by Ibrahim and Barr [61 and
number increases. Bar m. It was indicated that nonlinear mode interaction may

Easep and McIntosh (51 investigated panels flutter under give rise to what are effectively parametric instability
random excitation and linear aerodynamic loading. The limit phenomena witdin the system. The parametric action is not
cycle ocillation was determined by epresenting the modal due to the external loading but to the motion of the system
amplitude by a Fourier series and applying the Galerkin itself and, hence, is described as "autoparametric." One of
averaging for temporal solution. The existence of a limit cycle the main features of autoparametric coupling is that responses
was predicted by studying the stability state of small perturba- of one part of the system give rise to loading of another part

through time-dependent coefficients in the corresponding
equation of motion. With autoparametric coupling the system

Cauribuled by td@ TmiW C.oirnmlls on Vibration Me Sound and may experience instability of internal resonance. Internal
P 'mm at Dilea Euaasoauns Techna Conim. Ctaskti. Obbo" resonance can aist between two or more normal modes
Septimbe 0-3. I96 of laAM .Soin o rmscamu aa nita.

n- Ii ood- a A Ho J- ---1I. 1 $ Ppw No. depending on the degre of nonlinearity admitted into the
1s-M-I0, equations of motion. Thus, with quadratic nonlinearities, two

Journal of Vibratio Acoustics, Strm, and Rellability In Design OCTOBER 1986, Vol. 1081421



modes i andj having linear natural frequencies w, and w are in m 2
internal resonance if% - 2w, or three modes i,.j, and k can be Y -12
in internal resonance ifw5 = iw,-,wj I. With cubic nonlinearity
two modes i and j can have internal resonance of the type k 2' 12

S=(1/3)w, or wj -(2/3)w,. Autoparametric interaction may t( t)
arise in many aeroelastic configurations such as airplane wing k1, 11  mi
with a store [81 or a Tee-tail plane in bending 191. The deter- k-"l;
ministic response of systems with autoparametric interaction
has been revieweu by Ibrahim [10, I1 and are well ,ql
documented by Evan.lwanowski [121 and Nayfeh and Mook
[131. Fg. I Selsemaoe Wagru Of cugie bems with watpwuswbie

The first treatment of the autoparametric random interac-
tion is believed to be due to Ibrahim and Roberts (141. The dif-
ferential equations of the system response moments were
found to be coupled with higher-order moment terms. In other I - / + 1.2
words, the moment equations form a set of infinite hierarchy. IP=0.9 q,4. +0.45T 4+- lq2 ,+q4")

The equations were closed by expressing third and fourth-
order moments in terms of lower-order moments based on the 0.3
assumption that the response process is "nearly" Gaussian. +- +-(q2 + 414 2)

The steady-state squares responses were found to behave

quasi-stationary in the time domain in the neighborhood of 0.3 . 1.2 1.2
the internal resonance condition w2 = 0.5w,. It is known that 4,2 =- qlql -q11+- 

q2
4j

the result of any linear operator, with constant coefficients, , 1 = 3E,- - 2 q)

applied to a random Gaussian process results in a Gaussian k. - 3EIIP (2)

process. However. if the operator is nonlinear, the resulting It is seen that the left-hand side of equations (I) represents
operation will not be Gaussian. Consequently, it is important the linear conservative part of the equations of motion. This
to consider the effect of the non-normality of the response of part involves dynamic coupling. The first term on the right-
systems involving nonlinearities. Schmidt [151 employed the hand side is the nonhomogeneous random excitation '(), the
Stratonovich stochastic averaging method to determine the second term constitutes the parametric effect of the excitation,
response of a system with autoparametric interaction. Con- k and '2, in the third expression, include all quadratic
trary to the results of Ibrahim and Roberts, Schmidt found nonlinearities. The linear igenvalues and eigenvectors of
that the system response possesses a stationary probability system (I) are determined by setting the right-hand side to
density function.The discrepancy of the two results motivated zero. The eigenvectors are used in establishing the linear
the authors to employ the non-Gaussian closure (used recently transformation into the principal coordinates Y,. i.e.
by Wit and Lin [161, Lin and Wu 1171. and Ibrahim and Soun- I q I = [R] I Yl (3)
dararajan (181) to determine the response of an aeroelastic
structure in the neighborhood of internal resonance. The where [R] is the modal matrix which is given in the Appendix.
method leads to a stationary response for all response Premultiplying equations (I) by [R]-I i[m] -, where [ml is
moments considered in the analysis. the mass matrix, and introducing transformation (3) gives

Theoretical Analysis 0 " Y;

Figure I shows a schematic diagram of an airplane wing 0 1'j " [ 2 r f Yi j
with fuel storage. The wing and the storage are modeled by
equivalent two beams having stiffnesses k, and k 2, and end
masses m, and M 2, respectively. Under random support ac-
celeration f(t) the wind end moves vertically (qt) and, under ,'2
the conditions of internal resonance, the mass m2 moves
laterally (q5 ). The mathematical modeling can be derived via (a,
the Lagrangian formulation. Both the axial and lateral com- =E'(7)

ponents of the velocity of the wing and the fuel storage are in- b, L '

cluded in determining the kinetic energy and, by using the a2  1  If,
static deformation curve of the cantilever, these components +ft- (7) (4)
are found to be in the ratio 6q,/5I, where I, is the length of b2 b, Y3
beam i. The equations of motion in terms of the generalized
coordinates q, are [91 where a linear viscous damping is incorporated, and r =

w/s, is the ratio of the normal mode frequencies. The non-
m, + m2(l + 2.25(12/12)2) I'Stus/, 4) dimensional principal coordinates Yj and Y2 are related to the

dimensional principal coordinates y, and Y2 through the

I .5m212/11  m2  (Q2) relationship
I YI, Y2 1 = ly,. y2 I/ q (5)

[ki 0 ] qi (m, +m 2 ) where qf is the response root mean square of the system when
+ -- (t) the length of the vertical beam shrinks to zero. i.e., the

0 k2  q2  0 responseofthewingbeamwithendmass(m, + n2).Aprime

denotes differentiation with respect to the time parameter r =

[2.25m2s2/4 I.5m2/, iF q,.' q, wit. The nonlinear functions , and 12 are
ii 1m-( 2  r I -a4 Y Y +as Y Y2+aY2 Y'+a7Y2 Y2'+asY

2
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= b. Y, Y,"+ b, Y, Y:*+ b6 Y Y'+ b, Y, Y;+ be Y; - 2r 2rbsm,,. *.i - 2r1b 6 im,., l.k. .,- I

+ bg Y; Y" + boy. -2zrbm2. ., + bsm 5 2.j- 1 + bmk,. I.,

= /I, (6) + b,,dm,,. + k(k- l)(DAIIm-s. -2.
+ 2DAA~m, jz +21A) m.; .-. 

+
DZ A

The coefficient a, and bi depend on the system parameters. + AA 3 rn. + D(2AA,

Expressions (6) include all quadratic nonlinear terms which + A2)m, 2.,,_ 2 + ZD(A iA, + A 2A )mi + 1, j+ lk - 2,1
can be divided into two classes: nonlinear terms of the same +D(Ai + 2AA 6)m, 2 .k-./1 +k2DAIBm,j. -i.,-
mode and autoparametric terms such as Y, Y2. The auto-
parametric terms give rise to the internal resonance condition r + 2D(A I B2 + AB,)mi, ij.k i-_ , + 2D(A IB3
= -i1i = 0.5.

The random acceleration t' (r) is as umed to be Gaussian +A 3 B,3 m,,, .- li-+ +2D(AB, +A4B
wide band random process with zero mean and a smooth spec- +A 2B2)m2 k -j.,. I + 2D(A B5 + A 5B + A,B
tral density 2D up to some frequency which is higher than any
characteristic frequency of the system. If the acceleration + ' 2)in ,1.s.,-, - +2D(A3B3 +AB6
terms are removed from the nonlinear pan of equations (4) by + A 1 )n, - .-. I +1(1-l)(D81m
successive elimination, equations (4) may be approximated by -6 J 2

a set of Ito's equations and the response coordinates constitute + 2DB IB2mi.,. - 2 + 2DBB3m,. . .- I + D(2BB,4
a Markov process. Introducing the coordinate transformation + B )m,,,_- 2 + 2D(1118 5 + B2dB )m, .. 1.,-,

SY, ,Y,y .yI =1X1 X2 XsHX4  (7) + D(B + I2 BB)m,,2,k-2 1  (10)

equations (4) can be written by the following set of Ito's where the definition
equations:

X; =x, Mr,,=I .. .3 XAX*X3X1p(X,r)dX,. dX,

xi =x. = ET XX X A, I

X3'= - X, - 2t' X3 -aX -(a6 + ras)XX2 - r
2 aX has been adopted.

It is seen that a moment equation of order n = i +j - k - I
- 2raXX3 - 2r2ra5XIX - 2ra 6X2 X - 2r 2raX 2X4 contains moments of order n and n + I. In order to solve for

+ asXJ + a9 XX, + aloX24 - (A I + A2 X + A 3X. + AX the steady-state response the moment equations must be rlos-
ed. The response moments will be determined by using Gaus-

+AXX2 +AeXJ)W(7) sian and non-Gaussian closure schemes.

X4- -rzX, - 2rrX, - bXf - (b5 +rO b)X,X2

-rb,XJ -2r 1 b,XX -2rzrbsX 1X,- 2 ,b6X 2 X Gaussian Closure Solution

- 2 2rb,XzX, + bgXj + b9X3X4 + bloX2 From the general differential equation (10). one can
generate four equations for the first-order moments and ten(81 +82X 1 + 2 + 84Xf +8,XIX2 + B6X22) W(T) equations for the second-order moments. These equations are.

(8) however, coupled through third-order moment terms. In this
section, the 14 equations will be closed by making the assump-Swhere the coefficients A and a depend on a and b. tion that the system nonlinearities are too small to the extent

In equations (S). the random acceleration has been replaced that the response can be regarded as nearly Gaussian. In this
by the white-noise process W(-r) where the Wong-Zakai (191 case, the cubic semi-invariants vanish and third-order moment
correction term is zero. The autocorrelation function of W(t) terms can be written in terms of lower-order moments. i.e.
is defined by the well-known relation

R. (') =EI W() W('+r') I=2D6(7-') (9) X,[XXXI=EIX X,I- . .EIXIEIXX XI
where 2D is the spectral density, and 6( ) is the Dirac delta
function. + 2E[X, EX IEJX, = 0 I)

In view of the complexity of the state equations (8) it is not where the number over the summation sign refers to the
expected to obtain a stationary solution for the corresponding number of terms generated by the indicated expression
Fokker-Planck equation. Instead, it is possible to generate a without allowing permutation of indices.
general differential equation for all possible moments by using The closed 14 coupled equations are solved numerically by,the Ito stochastic calculus 1201 or the Fokker-Planck equation using the IMSL-DVER.K Routine (Runge-Kutta-Verner fifth
[211. It is not difficult to show that the differential equation of and sixth-order numerical integration method). The transient
the response joint moments is given in the form and steady-state responses of the system mean square
m *l - iml. ,. .+ j m1. J_ 1.*J- I + *( - m +. ,. s.k - 1.1 displacements E[ Y2, and ET III] are plotted in Fig. 2 for inter-

nal resonance ratio r = 0.5. mass ratio m,/m =0.2. beams
-a^. -.- (r~aa length ratio I/ 1, = 0.6, and e = 0.02. It is seen that the

+a )mI A,. .L.A- -ra m,.., -2r 1am., jkI steady-state response fluctuates between two boundaries
which will be referred to as lower and upper limits. Repeating

2,.ra1 .m.,.k 1,1+1 -2Ca6mo...,,, the numerical integration for various values of the internal

-
2 1 5ra~ms. .i,_, +ase* tu+ ami,, resonance parameter r = 0.5 =k e, one can examine the effect

of the system parameters upon the response mean squares.
+ 10mU. -1.. 2] + ' - rn Am. + I ..- I - 2r2rmj,1  The effect of damping ratios r, and r2 is shown in Fig. 3(a).
-b~m$.L1j, I -(rbs + b6)mj+...ej- IIt is seen that the region of autoparameteric interaction

becomes wider as the damping ratios decrease. Figure 3(b)
- r t

b,m,. 2 - I - 2r, b,m,. . ,., shows the influence of the nonlinear coupling e. For very small
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e the system does not reflect any autoparametric coupling for sian. Thus one can establish a better approximation if fifth
the whole range of internal resonance ratio. As e increases the and higher-order semi-invariants will be equated to zero. i.e.
system enters the region of autoparametric interaction. This
region becomes wider as e increases. The effect of the mass X, XX =EIX, XXXI.]
ratio is shown in Fig. 3(c).

Nom-Gna|ass Closure Solution - t EIX,]EIXXX,X.]

Since the system is nonlinear, the response process is not
Gaussian distributed and the corresponding third and higher- to
order semi-invariants will not vanish. These higher semi- +2 E EIXJEIXMIETXX,X,.j

invariants give a measure to the deviation of the response from
normality. However, their contribution diminishes as their 10
order increases if the process is slightly deviated from Gaus- -6 E Xj XjEXJE ]IX,,]..

1.5.
Et,]i ... +2 F, EjXjJE[XX, E[XX.

................. to [ , ,IE X X X .
........ . I XM X .

+24E(X,]EXIETXk]EjX,E[X.j=0 (12)

From equation (10). one can generate moment equations of
order up to four. This will result in 69 equations which are
coupled and contain fifth-order moment terms. Replacing
fifth-moment terms in terms of lower-order moments by using

,, ._ _ _relations (12), the 69 equations will be closed. The resulting 69

21 . ... .. coupled differential equations are solved numerically by using

Q., the IMSL-DVERK subroutine. Figure 4 exemplifies the time
history response of the displacement mean squares for internal
resonance ratio r = 0.5 and damping ratios , = 0.02.
During the transient period the mean square of the first nor-
imal mode displacement grows until it reaches a peak value at r

= 60 then drops to a lower level at r - 150. The mean square
0..2.4 of the second normal mode displacement grows much slower

until it reaches it peak at r = 150 which is the time at which
the first normal mode mean square reaches its minimum

0.1 value. This feature reflects the fact that the two normal
I modes exchange energy during a transient period after which

each mode shows a complete stationary response. Unlike the
o. . "Gaussian closure solution described in the previous section,0 so 5o 0 L50 500 000 150o 00 the non-Gaussian closure solution brings the system into a sta-

Mlg. 2 TranIent and steady-staot raiona baed on aussian tionary state. The stationarity of the solution is confirmed by
e (r 1 0.5. 2, = f2 = 0.02. 2m I - 0.2,. = 0.02 setting the left-hand sides of the closed 69 equations to zero

. .020 020 0 ..2sil

..025 .020

1.0 0.3

I.-.

2. ,y 0.2t-.(--'
0.5 2.1 .

0 5
0.45 5.S ---- 5.45 0.5 0. is 0.40 0.5 0.55s

-.2. - .2 (b) c - cs -0.02 1.) ' - 3 0001

.2/as - 0.2 0 - 0.02
P. 3 Gaualam ooum n fo r wale w yla inm pantee
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and the resulting nonlinear algebraic equations were solved Fokker-Planck equation of a nonlinear two-degree-of-
numerically by using the ZSCNT subroutine which is basically freedom system via the stochastic averaging method.
the Secant method for simultaneous nonlinear equations. The However, Schmidt did not determine the constant of integra-
algebraic solution is found identical to the stationary solution tion from the normalized condition.
obtained by numerical integration. Originally, the authors The numerical integration of the 69 closed differential
tried to obtain an algebraic solution for the 14 equations resonance ration r-0.5.e. The influence of the damping
closed by the Gaussian closure scheme. However, the solution ratios, nonlinear coupling parameter e, and mass ratio are
did not converge for all possible guessing values. This shows shown in Figs. 5(a-c), respectively. The effect of these
that the Gaussian closure scheme is not adequate to model the parameters on the response mean squares is similar to their ef-
system nonlinearity and thus results in a nonstationary solu- fect in the Gaussian solution curves; however, the response
tion. The validity of the stationarity was previously verified by curves have one branch which is located within the limiting
Schmidt [15] who obtained a stationary solution of the curves of the Gaussian solution.

Coadulom
1yl5 l The random response of a coupled beam system with

1.0. quadratic autoparametric interaction is investigated in the
neighborhood of the critical region of internal resonance. A
general differential equation of the response moments of any
order has been derived and found to represent an infinite
hierarchy set. Two closure techniques have been employed.
These are the Gaussian and non-Gaussian closures. The Gaus-

0.. sian closure led to a set of 14 coupled nonlinear equations for
the first and second moments of the system responses. The
non-Gaussian closure gave 69 coupled nonlinear equations for
the first through fourth moments. The two sets of differential
equations were solved by a numerical integration algorithm.
The Gaussian closure solution led to a nonstationary response

0.0 , _ _for all even order moments while the non-Gaussian closure
solution showed that the system reached a stationary state.

zITl" The influence of the system parameters upon the response2- mean squares were examined over a range of internal
resonance within which the system autoparametric interaction
took place.

--- 0.02
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Stochastic modal interaction in linear and nonlinear
aeroelastic structures

R. A. Ibrahim and Z. Hedayati*

Texas Tech. University, Department of Mechanical Engineering. Lubbock, Texas 79409. USA

The linear and autoparametric modal interactions in a three defree-of-freedom structure under
wide band random excitation are examined. For a structure with constant parameters the linear
response is obtained in a closed form. When the structure stiffness matrix involves random
fluctuations, the governing equations of motion, in terms of the normal coordinates, are found to
be coupled through parametric terms. The structural response is mainly governed by the condition
of mean square stability. The boundary of stable-unstable responses is obtained as a function of
the internal detuning parameter. The results of the linear system with constant parameters are
used as a reference to measure the deviation of the system response when the nonlinear inertia
coupling is included. In the neighbourhood of combination internal resonance the system random
response is determined by using the Fokker Planck equation approach together with the Gaussian
closure scheme. This approach results in 27 coupled first order differential equations in the first
and second response moments. These equations are solved numerically. The response is found to
deviate significantly from the linear solution when the system internal detuning is close to the exact
internal resonance. The autoparametric interaction is found to depend significantly on the system
damping ratios and a nonlinear coupling parameter. In the vicinity of combination internal
resonance, the second normal mode mean square exhibits an increase associated with a
corresponding decrease in the first and third normal modes.

I. INTRODUCTION as well as within the structural components themselves,

The modal analysis of aerolastic structures is usually Concentrated nonlinearity acts locally lumped in control
carried out by using one of the available computer codes mechanisms or in the connecting parts between wing andcarieou by d using nethe available computer od external stores. This nonlinearity results from back-lash
for eigenvalues and eigenvectors. These computer

algorithms are useful in determining the structural in the linkage elements of the control system, dry friction
dynamic behavior under various types of excitations. The in control cable and push rod ducts, kinematic limitation
first step usually involves the determination of of the control surface deflection, and application of spring
eigenvalues and eigenvectors. With this information one tab system provided for relieving pilot operation.
can determine the linear response to deterministnc or Breitbach' determined the flutter boundaries for threerandom excitations. For systems with constant different configurations distinguished by different types of

parameters the mean square response to external white nonlinearities in the rudder and aileron control system of

noise is linearly proportional to the excitation spectral a sailplane. It was shown that the influence of hysteretic
density. If the excitation is acting parametrically to the damping results in a considerable stabilizing effect and an
system the equilibrium state could be stable or unstable in increase in the flutter speed. However. this special type of
a stochastic sense. In certain situations the structure may non-linearity does not bring the structural response into a
not behave according to the linear theory of small bounded limit cycle. Similar effects of nonlinearities due
oscillations and a number of complex response to friction and back-lash were considered by De Ferrari et

characteristics such as amplitude jump, internal al.', Peloubet et al.6 , Reed et al.' and Desmarais and
resonance, saturation phenomenon, and chaotic Reeds examined the effects of control system
resoance, aturon d Tnonlinearities. such as actuator force or deflection limits.motion"2 may be observed. These new characteristics
owe their origin to the system inherent nonlinearities on the performance of an active flutter suppression
which should not be ignored in dynamic analysis. system. It was shown' that a nonlinear system which is

In aircraft structures several types of noninearities stable with respect to small disturbances may be unstable
have been reported. Breitbach 3 classified structural with respect to large ones. Another important feature was
nonlinearities into distributed and concentrated. that a store on ; pylon with low pitch stiffness can provide

Distribution nonlinearity is induced by elastic substantial increase in flutter speed and reduce the
deformation in riveted, screwed and bolted connections dependency of flutter on the mass and inertia of stores

relative to that of stiff-mounted stores.
* Currently PhD student. Ma husetts Institute of Technolo. In structural dynamics, the nonlinearity may take one
Department of Mechanical Engineenring, Cambridge, MA 02139. USA of three classes."': elastic, inertia, and damping
Recuived September IO56. Dicussion close February 1987. nonlinearities. Elastic noninearity stems from nonlinear
0266-8920/86/040182-1052.00
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strain -displacement relations which are inevitable. Inertia
nonlinearity is derived, in Lagrangian formulation, from
the kinetic energy, In multi-degree-of-freedom systems
the normal modes may involve nonlinear inertia coupling
which may give rise to what are effectively parametric , ---. -

instability phenomena within the system. The parametric '
action is not due to the external loading, as in the case of
parametric vibration, but to the motion of the system
itself and, hence, is described as autoparametric 1 . The
main feature of autoparametric coupling is that responses Fig. 1. Schematic diagram of an aeroelastic Structure
of one component of the structure give rise to loading of and Coordinate System
another component through time-independent
coefficients in the corresponding equation of motion. The
deterministic autoparametric interactions in two and
three freedom systems were examined by Barr and of the shown system only the symmetric motions of the
Ashworthz . Haddow et at.", Ibrahim et al. 4 , and two sides of the model are considered. Under random
Ibrahim and Woodali. These studies have shown that excitation the system response will be described by the
the mode which is externally excited exhibits a saturation generalized coordinates q,, q 2. and q3 as shown in the
phenomenon in which energy is transferred to other igure. The equations of motion are derived by applying
modes involved in the nonlinear coupling. The stochastic Lagrange's equation
aspects of parametric and autoparametric vibrations have
recently been documented in. a recent research d -:L_ 2,QlL
monograph by Ibrahim' 6 . d- (-- -

To the authors' knowledge the random response of
systems with autoparametric coupling has been restricted where L = T- V
to two-degree-of-freedom systems. This paper deals with The kinetic energy T is given by the expression'-
the linear and nonlinear modal interactions of a three
degree-of-freedom aeroelastic structure subjected to 1t  [1
random excitation. The deterministic responses of this T=- 1 +m2 I ++ q
model under various internal resonance conditions

Vk, j,=O (where k, are integers and (vi are the system 1 3m 2
normal mode frequenciesi have been determined by +ifil +r 2 -? 3)m3,1 + .

Ibrahim et al.i . The system involves quadratic 2,

nonlinear inertia which couples the system normal +imt +M)4143+ 9M 212 tq i-s- .- q1q, ,4 3)
modes. It was shown that under principal internal -01

resonance, the mode which is directly excited is 3M2q4 .
suppressed and energy is transferred to the other mode. +- 112 q,,43 + 41q 24 3-- q2 )
When the structure possess combination internal 211 -  q5
resonance of the summed type the normal mode 6m,
amplitudes did not achieve a steady state and the + -lq 24243 -I-q 24.i
response is characterized by energy exchange between the
three modes. where a dot denotes differentiation with respect to time t

The main objectives of this paper are to present the Neglecting the gravitational effects, the potential energ.
linear, parametric and autoparametric random responses V is given by
of the same aeroelastic model considered in Refs 14 and
15. The mean square responses will be evaluated for a V= 1 2(kqZ +k 2q k3q' i 31
model with constant parameters and for a model with Substituting for T and V in equation 1 .and considering
random variations in its stiffness matrix. The nonlinear F(t) as the only nonconservative force Idamping forces
random response of the system in the neighbourhood of will be introduced later) results in the equations of motion
combination internal resonance of the summed type will in terms of the nondimensional coordinates 4.
be determined by using the Fokker Planck equation
approach together with a Gaussian closure scheme. The
effects of the system nonlinearity and damping ,l 0

coefficients on the mean square responses will be 03 m1 2 in2  0 + 0 k, 0

examined. [M13 0 in 3 ] 0'~ 0, k3  12j

I1. BASIC MODEL AND EQUATIONS OF =1 m' q , J---w f 4
MOTION wI F(I/) 1 2

Fig. I shows a schematic diagram of an analytical model
of an aircraft subjected to random excitation F(t). The where
fuselage is represented by the main mass M3, linear spring
K3, and dashpot C3. Attached to the main mass on each =qqj, r = UoJt

side are two coupled beams with tip masses m, and M, q3 is taken as the root-mean-square of the main mass
stiffnes e K, and K2 ,and lengths 1, andl 2.In theanalysis when all other parts are locked under forced excitation,
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W3 is taken as the third eigenvalue of the system, and
i,=i +m2 [l + 2.25(12,, (2]"

tm 2i

M 3 3 =nml +M 2 +m 3

M13=mjl +MZ

Sm2jj0.45(1.52 )(2q ,, +42 + 5qi)
+ ( 1.5111)(0.2q1 2 + q2q3 + 2q241 + 241q 2 )

+(l.2,112)(q24 2 +q2) (5)

where a prime denotes differentiation with respect to the 1 2 .
dimensionless time r. Fig. 2. Dependence of frequency ratio on s stem

parameters for 1211 =0-.5. m2 m =0.5. m3 m, =I

IlI. EIGENVALUES OF THE SYSTEM

The system eigenvalues are determined from the Y, by using the transformation
conservative linear part of the equations of motion[m]fql + [k]{q = {0j (6) q , [R]l Yr19

The characteristic equation of (6) is where [R] is the modal matrix consisting of the

DctI~kl - w3[m]I 0 (7) normalized eigenvectors.

where a) is the eigenvalue of the mode in question. [- I 1 1
Expanding the determinant gives the cubic equation [R] = n , 1 101

N~~~ n 1101-ii 1.

-1 2 + 
n-- -- +n2 -n

m1 m22  mlIM3 3 2 033 L\033 the elements of matrix (10) are determined by using the

+'02/ M? 2 j w * decomposition method'" and are listed in Ref. 17.
i mtransformation (9) gives

3 3 022 W331 033
Premultiplying equation 11) by the transpose of the

+0(0!2.fl 22=0 (8) modal matrix results in diagonalizing the mass and
\0s/ 3 \033/ stiffness matrices. The resulting equations involve

nonlinear coupling and have the form
where the frequency parameters w=K m, are the

natural frequencies of the individual components of the 0 0 11y'; [k, 0 0 i }
structure. The IMSL (International Mathematical and jI 0 A
Statistical Library) Subroutine ZPOLR (Zeros of a .0 M 0k . 00 ,

Polynomial with Real Coefficients) is used to find the [0 0 .2 [M 1 1 3 0, 0 k Y3J
roots of equation (8) numerically. Fig. 2 shows a sample
of the dependence of the natural frequency ration r=03/ i F(23

(Cal +C02) on the ratios 0) 11 / W3 3 and W22/(033 for beams = h ) 2F(r0 3 ) - m2q3i 3

lengh ratio1I/1=0.25, and mass ratios m2 /'mI = 0.5, and 1Wi) 1 1 '02

M3/mr=5.0. Other sets of curves for different system
parameters are obtained and reported in Ref. 17. The
importance of these curves is to define the critical points where
where the structure possesses internal combination
resonance r= 1.0. It is seen that the most critical region is M5 = I + ill + 2.25/i2 + 3fin, + 2hii + n1, + h,)
located for the curves of W22/W33 

= 
I and 2. For the + +rM3/IM)]hi+2h

analysis hereafter the following parameters will be used:
11/12 - 0.25. ca22 /0 3 3 = 1.4. k,1 = I +(k2 1/k)n 2 'k1)n2

y-t = t(Lij I yI + L, I y2 + Lj~j y 3

IV. TRANSFORMATION INTO NORMAL + y (Ljl 2YI + L122 Y2 + L 3 2Y3 )
COORDINATES + .Y(Lt 3 Y1 + Li23Y 2 + L23Y2 + L 3 3 Y3)

Equations (4) include linear and nonlinear dynamic + U1 Iy12 
+ M,22Y,

2 
+ Mi 33y,32

couplings. The linear coupling is eliminated by
transforming equations (4) into normalized coordinates + M11 2 Y' + Mt 3s + M2'A'
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2=m 2,m1 . #=1 1 It  where the double summation expression is called the

L = 0.9# + 2.25#,h, + 0.3n, + 1.5nh + 3n, Wong-Zakai correction term 6 .
ijk +The system stochastic Ito equations are

+A12.
2 +nJnk +n1.5 3+ l.+i +l.2,'i)nl +hO] dX, =X 2 dT, dX 3 =XdT, dX5 =X,dr

+tih[2.25 + I .Sin, + n6) + -Il1.2 f#)ljnlk

%fi,* = 0.9#l + 3(n + nK) + (2.4/#)njnk  dX 2 = -{2trl 3X 2 +r23X,+- - 3.' 0

2.4n, + hi[4.5# + 3(nj + nk + (2.4/fl)njnki L IL

Ji 9kk) k1x(L11X +L121X3+L131X5)

.4,, = 0.45P + 3n, + ( 1.2/)n? - (2. 2r2 3X, + ri3X 3)

- 1.2n, + h[2.25# + 3n, + I l.2/f)n1] xiL,, 2 X,+L,22 X 3 +L, 32X 5 1-(+ X 51

2 2Xr j=k-l) (13) ,(L1 3X1+ L123X 3 +--L1 3 3 X,)- .W, 2
+,Al I22X4 + M33,

V. DYNAMIC MOMENT EQUATIONS +ti, 2 X 2 X4 .W, 3 X 2 X6 ±.w, 2 3 x"x

The response coordinates can be approxiated as a
Markov vector if the random excitation is approximated
as a zero mean physical white noise W(r) having the +f, -, [f,(L . V.-LtX 3 + L, 3 .\ L

autocorrelation function

R.(ArI= E[WIT)W(rT+At)] = 2D6(Ar) (141 +f 2 L1 2X 1 +L12 2X 3 +L, 32XVI

where 2D is the spectral density intensity and 6( I is the 13X1IL,2 X 3  L, 3X0]

Dirac delta function. This modelling is justified as long + f -X+
L, 21 X 1-L,.X.,

as the relevant Wong-Zakai"' correction term is
introduced. The non-linear functions ', contain
acceleration terms coupled with displacement "J2L2 12 X, ±L 2 2 2 X3 --L23 2':

coordinates such as Y" Y. These terms are removed from + (f 3 (L2, 3X, + L 223X 3

equations (12) by successive elimination by using +L 23 3X 5 )](Lt, 2 X1+L, 2 2X 3 -L, 3 2X,)
MACSYMA software. Equations (12) take the new form :2

Y;'+2;,r,,Yi+r2 Y,=fW(T+9gJIY. Y '
) (15) + [J(L 3 11X,+L 32 X 3 -L 3 3

,
X
\

where linear viscous damping terms have neen introduced +f 2I L 3  2X + L 322X3
to account for energy dissipation, and

+ L322 X 5I- 313L3 3X + 23X3
fj=(k/,,Mj,(k q, 1 rL3 -wSw 3 .)I-
f =AhM, . r=q, I

_ __1 2+L 2 3X 3 +LI 3 3X 5 )}dB
W()~ -- ) Fr. M 3

dX, = - f2",2r23X + 
r-23X3 + -. [(- 2,, r 3X , - r 3,

Introducing the transformation into the Markov state %f 2 r
vector X

x IL 211 X I + L 122X 3 + L 2 31X 5)
I'. ,, Y2,Y',, Y3. Y'}= {X,,XA2 .. . X,, (16) _(22,r 3 X,+r23X 3(

equations 115) may be written in the standard form of 3

Stratonovich differential equations x {L2t2XI + L222X 3 + L,32XY)

6 - (2,X, + X,)

dX =F,(X.r)dr+ Y Gj(X,r)dBjIr) (17) x IL2, 3 X, + L2 23X 3 + L2 33X 5 )
j=1 M2 X±M 22X+ 2  33X2) 1+ M21IX22 + M2X 4+M M b3X

where the white noise W(r) has been replaced by the
formal derivative of the Brownian motion process B(T), + M2 1 2 X2 X 4 + M 21 3X 2 X5 + l 223X4X , r
I.e..

WIr)=dB(r)/dr. 
2 = 2D +I f2 ---- [f,(L,,. X, +L 22 1 X 3 + L2 31X 5 )

Alternatively, equations (17) may in turn be 22

transformed into the Ito type equation +f 2 (L2 12X +L,2 2X3 + Lz 32X 5 )

( 6 G G (X r) +f 3 (L21 3 X +L 2 2 3X 3

IX[A . J " " ,(X , I + L..X)J +MM

+ i GO(Xr)dB)(r) (18)
. I
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L LIL I 1 -, Lt 2 IX 3 + L, 31 .X) incremental moments evaluated as toll,-o.

+J'2iL t12 XI +L 1 22X 3 + L1 3 2X,) oIXt)= urn

+bAX. rl= lirn E[ Ir -Art-\Xir
+(L,MX+L2X3,L-3X )M "oAr-s

- aX r Att-.rIt;] ,C
a £LL 3 t t, L323X3 + L 333 X5 I The coefficients a, and h, are ealuated for the present

+J)2(L 3 12XI +L 322 X 3 +L 332 X 51 system with the aid of MACSYMA program It is not

+IJ3 (L3 13 X + L5Z3X + L33XS)] possible to solve the resulting Fokker Planck equation
even for the stationary case. Instead. one ma% generate a

L2 L'X5dB general first order differential equation describing the
x(L 2 3 3 Xt +23 +2L33X1) devolution of response moments of an% order. This

equation is obtained by multiplying both sides of the
vsystem Fokker Planck equation by the scalar function

dX,= - 2;'yx6 +X,+-y [t.r1 3X. -r 3 X
M(Xi= X 'x'X ,Y'.X - ,

x (L 3 IX I + L 32 1tX 3 + L 31 X 5)3 '2  Land integrating by parts over the entire state space - f <

- 12 2r2 3 X4 + r23X 3 ) X < x. The following boundary conditions are used

x (L 3 12XI + L 3 2 2 X 3 4- L 3 3 2 XS) p(X- - T t=plX- X )=0 i23i

-(2 3 X,+XX)lIL 3 3X1 Due to space limitation the system moment equation

x L 32 3X 3 +L 33 3 ., I will not be listed in this paper. The reader may refer to
Ref. 17 for more details. However. the general form of the

+ .V31 1X' + M 3 2 X. + .1 33 3X; resulting differential equation is

+.Vf3 X2X4+M 4313X2X,-W4323X.tXb]d 
n ,otm_1 4

where N =m, m n k,.

In deriving the system moment differential equation the
+.13-- .- f1(L3 1 ,IX +L 32 1'X3 + L33 1X5  following notation is adopted

'f, 2IL 3 1,XI +L 3 22 X 3 +L 3 32X5  m k, k=J . pX.r(lX)dX, d.\ .. dA', 25I

+ 3 L3 1 3X I + L3 2 3 X 3 ,- L 3 33X 5 I]

e" It is found that the differential equation of order V
- [j J(LI , I X I + 

LI I X 3 + 
L 3 IX.0 contains moment terms of order N and N - 1. The source

f3 3M Iof this infinite hierarchy is the system nonlinear functions

-1LI IX I-L 2 2X3 + L, 3 2X') di, in equations 1121. If these nonlinear functions are
dropped the system becomes linear and the response

1 L, - 
tL 2 3. 3 +L, 3 3 XAJ] moment equations are consistent. In the present study the

IL3 t 1X1 '-L 32 3X3 331. r following three cases will be examined:

"it) Linear response of constant coefficients structure.
£JL 2, I X L zI r-L2 3 X5 I (ii) Linear response of the structure with random

stiffness.
-fJ2(L 2 12X+L, 2 22 X 3 -L 232 X5S iil Response of the structure with autoparametric

L. +L .L, 3 3 Y] interaction involving the internal combtnatton
131L , +internal resonance 1)3 -S I "- .

a IL3 2 XI + L 32 2X3 + L331X 51) dB 1191

V1. STRUCTURE WITH CONSTANT
The evolution of the response probability density PARAMETERS

function is described by the Fokker-Planck equation The equations of motion for this case are obtained from

equations (IIt by excluding the nonlinear functions ,.

Op(X. TI ? The resulting equations of motion are
_ _ - [uIX. T)pX. rf]Pr P.X, Fl0 Of [ , 0 0 ~

1~±±, [y
"

t it2101 [ 0] Y' + zr: 0 0 i
il0, , I1,, 0 0 _ 0 Y

e. 6 2 =- (

+ r23  0 3 01 Y1 j i i I

where pIX.tr is the response joint probability density + r3  Y2 WIr)fr

function, and a,(X. r) and b,lX. r) are the first and second 0 0 IY 3 iI (26)
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For this linear case the response moment differential
equations are consistent. The mean squares of the
stationary response is obtained in the closed form

E[YfO =DI . r,3,,. E[ Y;2 ] = DI (2, 1r,,.

E[Yfl=oy ,"r 3 j E[Y 2] =D2 1"2,r.

E[Y 2] = DIf (-.'j. E[ Y'2] =Djf '2 . --------

Before presenting the linear response graphically. tt ..i t
would be useful to recall that the generalized coordinates
q. were nondimensionalized with respect to the root-mean
square of the main mass response when the coupled - - -----
system was locked under forced excitation. The value of
q3 can be estimated from the single degree of freedom
equation of motion

(min mzm'm 3 3-C 343 +k 3q 3=F(lt )  281

which has the stationary response Fiq. 4. Mean square response of normal modes for

E[q3 "] = E[43
2

] = D 2, 291

and therefore I_ D 2

q 3 =\ D 2: 301 I

The excitation parameter level D 2,3 is chosen so that
q3 is chosen so that q3 is unity and as a result any
deviation from unity gives a measure of the dynamic
interaction (linear or nonlinear I with other modes. Forthe -

analysis hereafter the excitation level will be chosen such
that -

D 213=I 131)

In this case the mean square response 1271 is reduced to
the simple form

E[]-I E[ ]

3 r,

E[2]=:E. FiY-] 2 2
2 , r23  Fiq. Wean square response of qeneralized oordinare,

=E 32y E[ =y,2] =,,.o5. 3=o.f

The linear response for both normalized and generalized -
coordinates is determined for various damping ratios.
Figs 3 and 4 show the mean square responses as a
function of the frequency ratio r for two sets of damping
ratios. It is seen that both the first and second normal
mode mean square responses decrease faster than the

F,, V

Fig. 6. 'dean square response of qenerali:ed coordinates
.02 ,. for 1 =2 =0.1l. 2 =.0I

third mode as the frequency ratio increases. In terms of
generalized coordinates. Figs 5 and 6 shows that the mean

.I . 1.1 12 . square displacement increases while the two beam
" displacements decrease with the frequency ratio. The two

Fig. 3. Mean square response of normal modes jbr setsoffiguresshowthewellknowncontroldampingeffect
Zi =4z=0.005, 3=0.0/ on the mean square responses.
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VIi. N IKLLILKL WI IH RANDOMI IIfr.NESS

The equations of motion of this case are obtained by
including a random component to each stiffness in the
original linear equatio ns of mot on. " F /.
The equations of motion take the/

22 m, 0 q:
in 13 0 1t 3 3  ,

k, -S,Mt 0 q2 = --

10 0 k 3"-S3(t I q3 Ftf

Introducing the same dimensionless parameters listed Fig. 7. Mean square stability houdarti of the qtru ctrt.
in Sections H1 and II. the equations of motion in terms of with random stiffness. for .=io /I
the normal coordinates after introducing linear damping
are :*..

_ 2,r r - 2 111' I 2 it T )

V3 -213 -3-[a [ llWIrl '3211.1T)

'3 3 lV3T 3l]y t I llftI 1341

where

and WlVrT are zero mean white noise processes with -
spectral densities 2D, Equations 1341 constitute a set of
coupled differential equations. The response mean 2 .21 .

squares are obtained by solving the stationary moment Fig. 8. Mfean square response ( normal modc ,111h
equations. The analytical solution for the stationary random stiffness for r= /.0." =1, I
response is

E[ Yf] = D/ :2,', - "l- - D~sf-
E I 2 

' I- , - _ - 3 . and 9 in terms of normal and generalied coordinatc,.

E[ Y'
2

] = r, 3 E[ Y2] respectively. It is observed that the response of tip mar ol

E[Y2] =D-' :2,r - D s - D 2s, 2 -D 3s 3 ;. the vertical cantilever is the main source of nstibilit%

E[ Yz] = r E[ Y2J VIII. ALTOPARAMETRIC INTERACTION
E[ Y3 = DJ 2;3- -D ls Ds -D 3s3: .E[ y 2 ] =DE[l 2 3  - 3 2 - 3  3  5 In this case the influence of nonlinear modal couphng ,on

E[Y3 3=E[Y3] 5 the system response will be examined b% including the
functions in the analysis. These functions arc ,nkn

This solution indicates that the system may be unstable significant if the structure is tuned internally such that the
depending on the values of D The fact that the mea normal mode frequencies have a linear relaonshp Fr
square must always be positive provides the stability the present system t is found that the foloing three
criteria for mean squares given by t351. These criteria are internal resonance conditions can take place" t
obtained by keeping the denominators of 35) always
positive, i.e.. il) 3 = *l )2

. 3 > 21,r lD2s~ D S " Z + s D3sj 3 } 03= w, and ,=2(!).. I I I

.2,rz> (Dis + D2.,2 ± D3.s3) The random response of the system will be exmined
,, 3 >DS

2  D, S21 3D061 under the first internal resonance condition. As
3S + 32 3 3 mentioned in Section III the response moment equation,

The stability boundaries represented by conditions 136) involve infinite coupling which must be closed in order to
are shown in Fig. 7 as a function ofthe internal resonance solve for the response statistics. It is known that the
frequency ratio r. For simplicity the excitation levels response of any nonlinear system to a random Gaussian
D,. 2, of the random stiffness perturbations are assumed excitation will be non-Gaussian. The desiation of the
to be equal. Samples of the response means squares as response from normality depends on the degree of the
function of the excitation level D 2 are shown in Figs 8 system nonlinearity. Generally. closure schemes are
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SE~q!] linear response characteristics which are displayed in Fig.
10. It is seen that the response fluctuates between two
limits during the transient period, then converges to a
stationary values which corresponds exactly to the linear
solution of Section VI. The effect of different initial

. conditions is examined and it is found that regardless of
,; :: the initial conditions the solution reaches the-same steady

state value. For internal resonance ratio r= 1.175. Fig. I I
,I shows another set of time history responses. In this case

Fq 1 the response mean squares do not achieve a stationary
state. During the transient period the frequency of the

Et 1 third mode is approximately 1.17 times the sum of the first
two mode frequencies. The quasi-stationary behaviour.
although present for all three modes, is most prominent

o . ,for the second mode.
.01 .02 .03 .04. .05 Oh To further illustrate the departure of the nonlinear

response from the linear one. Figs 12-15 display the
Fig. 9. Mean square response of generalized coordinates dependence of the normalized mean squares on the
]or same conditions of Fig 8 internal resonance for various system parameters. The

mean squares are normalized by the corresponding linear
solution. The subscript GiL refers to the ratio of the

classified into Gaussian and non-Gaussian 6 . The nonlinear Gaussian solution to the linear response. In the
Gaussian schemes are useful for dynamic systems with regions near critical internal resonance the upper and
weak nonlinearity. However, in certain situations the lower envelopes of the quasi-stationary response are
application of Gaussian closures may lead to stochastic plotted. A general trend is observed to exist in all figures.
stability boundaries which are different from those There is a sharp increase in the displacement mean square
derived by other techniques such as Stratonovich
stochastic averaging or non-Gaussian closure
approaches. This type of contradiction has been reported
for nonlinear systems under parametric, random .06 •
excitations'. For two degree-of-freedom systems the .0. Pr liu E IY

Gaussian closure scheme yields nonstationary response
while non-Gaussian closure gives strictly stationary "°2°
response. However, the main response characteristics are
found identical as predicted by both methods. .,006 EI "

This Section examines the nonlinear response as .300oo
obtained by using a Gaussian closure scheme which is .ooo
based on the properties of the cumulants. For the present
system 27 equations for the first and second order .11
moments will be generated. The moment equations are t0
closed by setting all third order cumulants to zero, i.e..

3

.3[XIXJX l= E[XX,X k]- E(XJ]E(XX 6] 46o .0 .... 00

Fig. 10. Time history response of normal coordinates /or
+2E[X,]E[X]E[Xk]=0 (38) =.001, E 0.0'5, r = ( 3 , (W, +')= 1,)

where the number over summation sign refers to the ,
number of terms generated in the form of the indicated ,
expression without allowing permutation of indices. . 3 o ..
Relation (38) is used to obtain expressions for the third .
order moments in terms of first and second order
moments.

The solution of the closed 27 coupled moment 0075 "
equations is obtained numerically by using the IMSL .00 f\ .
DVERK Subroutine (Runge-Kutta-Verner fifth and sixth ,oo00NO: I
numerical integration method). Depending on the value 0
of internal detuning parameter r the system response may E[YI 3.3001

be reduced to the same linear response of section VI or p"k p
°

.6

may become quasi-stationary which deviates significantly .0 0
from the linear solution. The response of autoparametric .04
interaction is found to take place in regions of internal __

resonance ratio slightly deviated from the exact tuning 0 10 20 30 40 270 2180 2'9o 2500

r - i. The deviation may be attributed to the contribution Fig. II. Time history response of normal coordinates
of nonlinearities incurred during the Gaussian closure showing autoparametric interaction, for -,=0.01. c=
procedure. Surprisingly, exact internal resonance yields 0.025. r-w /(O, +w 2 )- 1.175
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Fig. /2. Mean square resonse of normnalized coordinates Fig. 14. Mean square response of' normalized
as function of internal resonance ratio r, Jbr I == coordinates as fuinction of internal resonance ratio r. for
0.005,. ~=0.0 1, t0.025 ~ =.. =0.0X5. =0 -0 1 =0-(5
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1
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Fig. 13. Mean square response of normalized Fig. 15. Mean square response of normalized
coordinates as function of internal resonance ratio r, for coordinates as function of internal resonance ratio r, bor

-0=.01, -=0.025 ;,=.0i. S -0.0.5
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with Parameter Random Fluctuations

R. A. Ibrahim* and H. Hoat
Texas Tech University, Lubbock, Texas

Th. rando repne of a noeinear situture! system is examined alhe at parameters we expa129e
road=m Iscstatom ith nor Temm is bad on dhe recent IeedIemI Is the &Mh7a~a tes of
st.l . .Aamid infaating. Tem- adod the I socoelcsu and ther Folikec-plat equation
approach to do Is a gIf I diflemoueteptio dq~ot~ esIhe the esohim of the statistical moess of the
respone1 1orns TMet differential equation is founed to consttte -n iiie coupled set of diffe emtlat
equatin dst s dlosed ve tus diffees douire schemes, 7he system respose is determined in the
neigidneeheod of vasise eoausc condition said for various random intensities of the system persimeters It is
found dte the enis mdad Ineeeo Is governed anly by the iternal resomae ratio and tder stiffitess
flecuion Intensity. Thet aeec of the tradom damping flactuatdon on the system response is found to he vey
sSA mte to t sdim thctaetl eliet

1. Introducetion dormant. As the excitation amplitude reaches a certain critical

T Ednmc behavior of liajtwesglst structures is of main level, the other modes become unstable, and the onginally

T ocr toarnatclengineers involved in the desigssp excited mode reachea an upper bound. This mode is said to be
and reliability of aerospace structures. These structures ar saturated, and the energy is then transferred to other modes.
usually made up of compoite materials tha ar nohmo This type of modal interaction is referred to in the literature
neous and exhibit fluctuations in their dynamic properties. as autoparametric interaction.

4 since one mode acts as a
The fluctuations of these properties are random in nature and paramtric excitation to other modes. Barr and Done' con-
thus result in random ciltva: an repnss Deedn ducted a ground resonance test and applied a sinusoidal
on the analytical modeling of such structures, the interaction excitation at one or more points to find out the conditions
between aerodynamic, inertia, and elastic forces may give rise uinder which parametric and autoparametric instabilities could
to a number of aeroelstic phenomena. For example. classical occur. The asstoparanortric resonanice was found to lake place
flutter can occur due to a linear interaction of ths he when the directly excited mode frequency is twice the indi-
forme. Classical flutter may also involve the coupling of two rectly excited mode. Barr and Done' obseve several combi-
or more degrees of freedom. However, the Hunea mathematical nations of normal mode interaction. For example. when the
modeling fails to predict a number of observed dynamic exciting mode was wing bending, the excited mode was found
characteristics such as amplitude jump, limit cycles paramet- to be one of the following: 1) wing store pylon bending, 21
ric instability, internal resonance, multiple solutions. an wing store pylon twisting, 3) engine pod mounting structure
saturation phe nn. These complex characerstics owe their bending. or 4) engine mounting structure twisting
origin to the inherent nonlineasity of the structure. In structural dynamics, the nionlineartty is represented in

The amplitude jump, limit cycles, and parametric instability three different forms: elastic, inertia, and damping nonlin-
are common features of nonlinear single- and multi-degree- earities. Elastic nonlinearity stem from nonlinear strain-dis-
of-freedom systems. Parametric istability' takes place when placement relations. which arc inevitable. Inertia nonhnearstv
the external excitation appears as a coefficient in the honsoge- is derived, in a Lagrangian formulation, from kinetic energy
neous part of the equation of motion. It occurs when the The equations of motion of a discrete mas dynamic system,
excitation frequency is twice the natural frequency of the wills holonommec aclesionomic constraints. in terms of the gener-
system. Internal resonance

2 and saturation phenomena
3 may alize coordinates q, a re usually written in the formI

occur only in nonlinear dynamic system with more than one
degree of freedom. Internal resonance implies the existence of 8V
a linea relationship between the normal mode frequencies of "tq, + it i .iqq+ -- Q.
the structure and results in a nonlinear interaction between f i j -1(

the normal modes insa form of energy exchange. Under 1-1.2. n,
external excitation the mode that is directly excited exhibits.
in the beginning, the same features of the response of a linea where V is potential energy, Q, represents all noneconservative
single-d-gree-of-freedom system and all other modes reami forces, and [ji', i I is the Chtistol'el symbol of the first kind

and is given by the epeso

Received Feb. 20. 1986; preseted ns Papter 864M92 at the I a m, f,
A~ikA/ASME/ASCE/AIIS 27th Strucssees, Stuctessrs Dynamics and [f J
Materials Conference. So Antomo. TX May 19-21. 1916; revsio q,- + -Tl
oeive Jtuly 11, 1966. Copyt* 0 AatIsititeb Of Aernautics
and Astnmca. Deatmet96 ofl tightsc cve. m Mme The m tri ensor it,, and the Christol'el symbol are genes-

AMA ially functions of the qk. and for motion about the equilibrium
t~lstsae Student, Dapar-mn of NMed-caal £sosneet.g confi*guration they ca be expanded insa Taylor seies about

tently Souse, Research Spenauhat. Agency foe 0efou Development, that stat Tius, from snerti sources, quadratic, cubic, and
Rates higher-power nonsnieartties; can ais
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Other types of nonlinearities, such as distributed and con- Barr and Ashworth." and Haddow et a].
5  

Their studies
centrated nonlineasities. are encountered in aeroelastic flutter showed that the system exhibits a number of nonlinear re-
problems.' Distributed nonlinearity is induced by elastic de- sponse phenomena under conditions of internal resonance.
formations in riveted, screwed, and bolted connections, as well high excitation level and low damping ratios. The authors of
as the structural components themselves. Concentrated non- the present paper have recently determined the random re-
linearity acts locally in control mechanisms or in the con- sponse of this system to random support motion when its
necting parts between wing and external storm This nonlin- parameters are tin-ieuependenL

2 
In fact, as the structure

earity is caused by backlash in the linkage elements of the oscillates, the damping and stiffness coefficients may expen-
control system, dry friction in control cable and push rod ence random time variations. The random variations of the
ducts, kinematic limitation of the control surface deflection, structural parameters and the random support excitation will
and application of spring tab systems provided for relieving be assumed Gaussian-independent wide-band processes. The
pilot operation. Breitbach

9 
determined the flutter boundaries Fokker-Planck equation approach will be used to generate a

for three different configurations distinguished by different general first-order differential equation for the statistical mo-
types of nonlinearities in the rudder and aileron control ments of the response coordinates. In view of the system
system of a sailplane. It was shown that the influence of nonlinearity, the response processes will be non-Gaussian-dis-
hysteretic damping results in a considerable stabilizing effect tributed, and the moment equatioms will form an infinite
and an increase in the flutter speed. Similar effects of nonlin- coupled set of moment equations, which will be closed via two
eanties due to friction and backlash were reported in Ref. 10. independent closure schemes referred to as Gaussian and
Peloubet et al.,

t 
Reed et al.," and Desmarais and Reed

1 3  
non-Gaussian closure schemes." These closure schemes are

examined the effect of control system nonlinearities, such as based on the semi-invariant properties of the response
actuator force or deflection limits, on the performance of an processes. The Gaussan closure scheme is only valid if the
active flutter suppression system. It was shown" that a non- system is linea with ime-invariant coefficients and is sub-
linear system that is stable with respect to small disturbances jected to Gaassian excitation. The application of Gaussian
may be unstable with respect to large ones. Another important closure to nonlinear systems is analogous to the linearization
feature was that a store mounted on a pylon with low pitch solutions of deterministic nonlinear differential equations. The
stiffness can provide substantial increase in flutter speed and non-Gaussian closure scheme is more accurate since it takes
reduce the dependency of flutter on the mass and inertia of into account the effect of the system nonlinearity on the
stores relative to that of still-mounted stores, response probability density function. More details of closure

It is clear that, in mathematical modeling, the aeroelastician schemes may be found in a recent research monograph" by
should consider various types of nonlinearities in order to the first author. The results will be compared with the re-
understand the origin of any unasal structural behavior sponse statistical moments of the same system when its coefli-
under various types of aerodynamic loadings. Under de- cients amre constants.
termmistic unsteady aerodynamic forces, these phenomena
can be predicted by one of the standard perturbation tech-
niques of nonlinear differential equaions.14.5 However,
aerospace stnucturea are usually subjected to turbulent airflow.
and the analyst encounters aerodynamic loads that are ran- I. T1woread Andysis

dom in nature. Furthermore, o the structure starts to Equatmim of Matm i asPs. marker Vetor
vibrate, its parameters. such as damping and stiffness, exper- Figure 1 shows a schematic diagram of an analytical model
ence random fluctuations with the passage of time. The dy- of a nonlinear aeroelaic structural system, which represents a

mi analysis of these structures is not a simple task, and it wing with external store. It consists of two coupled beams
requires an advanced backgroutd in probability theory and with tip masses m, and m 2. The present study will examine
stochastic differential equations the nonlinear random interaction between the first two normal

It is very important at this stage to distin
u
iish betwee

n 
two modes under random support motion o(t) when the dynamic

different problems encountered in structural dynamics. These properties of the system experience random fluctuations. The
are the random response of dynamic systems to random mathematical modeling of the system was derived in Ref. 22.
parametric excitaboaan' and the random rnponse of structural In terms of the nodimesional normal coordinates Y, and
systeus whose plmesers are random variables described in a Y2 , the system equations of motion are
probabitlsi sce. In the foemer case, the system equations of

oon am sochasic differe tial equations with coefficients
that awe random prces while, in the latte case, the equa- r
bow of mot. ame ditereatial equation with parameter 1 01
unmrtanie The methods of traming dymuc systems under 

0  
1

parametic r esotabon are difere from those used
tn solving diferauetial equatbons with paramtertnerates
Paramet ric d vibra isas baealy a combination of the + 2C,[1 + 0 r) Y1
theory of stodsmak I o , stochastic differential equa- 0 2r 

2
[1 + f(,)]J '1

noua, and applied dynarmcs. On the other hand, systems with
paraetier mcrlamies (refer.e to in the literature as dis-

inv1 s mmil v e random beda-vahn problem + (i) 0 i a,

sod raim Ba.d duoty Wis efrmework ofthelinear 0 ,r[1+(,) ¥z) y
dwo.y of rusidom vilm of dis eed systems. the en-
ims Ime-n problems of random agenvalues, random
eagvctoms ranidom resonses normal mode localization, [a2. ou1I Y1 '11(y, Y' Y")
opnn d aad .- uiality. These imes hve recently -2 (3Y2f M * Y. Y")
beam reviwmd by d adnhor in lsf. 18.

The paer del with de random r-e of a nonlinear
two-degme-o-feedom suctwl model wham its damping
and anfum . indm s involve ramdom time variation. The where (Y ¥Y2) - {y, h )/q, and q0 is the response root-
modad oimas of two Capled bem with tip oeentrawd mean-square of the system when the vertical beam is locked
m a dhew a FIg. 1. TIhe de i a d rspone of this and the horimonta beam behave as a single degree of freedom
ml tO peemdc Npoet uo lam been eimmsed by with end nm mt + m2.
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nit"

V, qa-25.21

FWR I Sebsiaie ofm ia ,iuemim d i aia pam- E

T'he normal coordinates y are related to the generalized 0.3,

21 The -I) .. RIM (2)- -

where [ R) is the system modal matrix that is defined in Ref.
2.Tesalparameter iiw-f10 is the nonlinear coupling 0

parameter. r- io/,is the frequency ratio where w, and w, 0 P5 CP5 7 5
are the normal mode frequencies (in the present paper it is -1
considered that w, < i). A prime denotes differentiation with Fig. 2 'flaiibtmow respofc mm ma Sam w ar rorduca
respect to the nondimensiosal time parameter T w, . to Gamudm %oom

The nonlinear functions 4, (Y. ' ) are given by the
expressions

0, (. Y, Y) -.Yti" aj, Y2 + ,Y2Yi"E(Y~l

+aY2Y"+ a.1'Y,
2 + a.,Y2' + .-a 0 g 1.0-

P2(y V. Y) - Y1 +, yi 1+bY 2 + bY 2 Y"

+ -b, YY; + b, Y, + NY,'Y2.+b,. Y,"0.

The coefficients a, and b, depend on the system parameters
and are defined in Red. 22. These functions involve quadratic 0
rionlineanties of the inertia type. They include autoparaimetnc;
coupling terms such as Y, Y' in which the acceleratin Y," of 1CY1l
the second mode acts as a parametic excitation to the first 0.1-
mode. The first expresaic on the right-hand sides of Eqs. (1)
represents the nonhomogeacous part of the escatatn while
the second expressio is the parametri action of the excita-
tion that couples the two modes paranitsneally andrl 0.05.
fJ,j(r represent the random fluctuations in the damping and
stiffness terms, respectively. These functions and the support...*."---- - -

acceleration are assumed to he Gaussian wide-bandi random
processes with zero men The spectral densities of thsdim________
processes are assumed to cover a frequency band that includes 0ISO0015 200 1450 ism0
the first two normal mode frequencies and to he well below ,F, 3 Thvdm rwni o mmmi. mintm "w"nv acemoi
any other higher normial mode frequency. to the limiting cawe. to nooGanlm 61,110111.
as the correlation time of t, (?) becomes vety small compared
with any characteristic period of the system, the response
coordinates approach a Marliov process. In order to represent
Eqs. (1) as a Markov vector, the acceleration terms Y", which Alternatively, the system equations of motion can be written
appear in the nonlinear termns +, (Y.Y', Y"), must be re- in terms of the Ito-type equation
moved by successive eliiation This process has been per-
forimed by using the MACSYMA software. Maving eliminated dXOX 5 5 I.r G,(X.r)

YEqs. (1) can be writtena in the Stratonovich forn14l d "''' f5ti,. Gj1 T dX

4+ 
4

X,' -fL(X, -) + G,,(X, j-1.s). ,..,4 (3) +~GXs)B(-

through the coordnate tramformaition where the double summation expressmo is referried to the Ito
(or the Wong-Zakai) correction term,' which is a result of
replacing the physical wide-band random process 1, () by the

(1IY2 1- YV.1' 7lX1'.X2 .X 3 ,X. (4) white noise W, (r).In Eq. ()the w loie proces W.(r)
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have been replaced by the formal derivative of the Brownian It ts found that the system F~okker-Planck equation cannot
motion B J ), i.e., be solved for the resiponaie probability densuty, in a closed

form. However. it is possble to generate a general differential
W, (r) - dB,( rdr (6) equaIon01 for the response! joint moments of any order .% bv

multiplying both sides of the system Fokker-Plazick equation
The statishical properties of , ( r) are by the scalff funicition

E[dB,2(r)1 -0Dd (7a) 0-XX 3 .

E~dB,(,)] 2D~d,(7b) where i +j + k+ t- N, and Lntegratin by parts over the
E[dB,(r)dB(r)I-0 for *j (7c) entire space - an< X < The folio"snnotation issdoptred

/ to denote the varioua response moments:

where 2, is the spectral density of the Brownian motion
process B5(r). The equations of motion can ntowbe written in m ,, fJJ~JXXp( X,r)dX,.dXdX,dX. (12)
terms of the Markov vector coordinates X, as-

dX, - X dr

dX, - Xdr

+-a9XX 4 .a, 1 Xj +4, IX+aXX+aX l~2fX- ~,X aXX

+ 4D, ,~i,2[a5 XX. + a,X 2 X4 +ab5,X,,X. (a~b, .a,b,)XKX.+a,b,X2X.J dv - X, dB.,( ')

- '( 5 XIX2 + a7X2Xs)dBk,(-r) -2f 1 ( Xi3 * aXX 3 +a6X2X)dB,,(,) -2tr(aXX, a,X7X)dB,('

-(,+A 2X1 + A)X 2 +A4 X,' +A5 XX, .AXfldB.(,)

dX...(- 2 X-2,X-bX -(b+ b,)XX-b,X,2 -2~.X-CXX-CbX ,2,*Xx

+bX, +IXiX+ btX. +4DJ,[b.XtX3+bX 2 X3 +abX,'Xs+ (a.b& b.) XX 2 X3 a~bXX

+4D,,r'(X4 + 2bXX 4 + bX 2X4-vbiXl2X4 +2b~b7, XA, X.+b',X, 'X4)Idr-2(b 4 XX bX.X)dB,(v)

-r'(X,+bX,,X2 +brXj)dB,,,(,) -2t 2 r(X4 +bXX+bX2 X4)dB8,(,)

-( B + B, 1 +BX 2 + 84 X? + 85XIX 2 + XfdB0 (r)()

where the underlined expressons, are the Wong-Zakas correc-
tion termns.

Dymt Mon ingook-
The joint probabiitsy density function ji(X. 7) of the re _________

sponse coordinates can be determinsed by applying the E
Fokker-Plazick equation

TrA -1)- Ty[a(. )pX

where as,(X, r) and b, (X. r) we the first and seodincre-
mental momena of &s Markov process X(T). These me
defined"a follows:

(lis (X t om
1-

(10b) R& M - 4M m u d EMW noon toi Goe

psovie that all lmits t~at d X(T) - X. "Son e ~ B,.f~ &I4Z 2 1 !M
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The resulting differential equation of the response joint moments is

+ 2oAA 2 .,,21 +2D 0 A1A 3 M-, 1A 2.f+ ( Di,,- D.(2AA. + A2,)Jm_,.h-2

+2D0(A1As +AA 3 ),n,. ,.,<. -~(A +AA) 2.1,+D~,, kfDAEn

+ 2D 5 ( AtE 2 +A2Bt)M,-.u~ku .- 1+2,D0 (A1 E, A3 B1 )n, ,.-I -+2LI(AIB. +A 4B1 *A 2B2)M,.,k!-

+2D,6(A,Bs+AE 1 *AB 3 ,..4B)m 1,,., I', I -2D(A 3B,.-4,B5 '-A.B)m, 2. -eiI

-~u'((- 1){2D2DMiI.2  ,D,,EB.m.u 2,,6+2B l3 .+(28)8 i

Gsa Clams Sainden LMSL (International Mathematical and Statistical Library)
It is seen that any moment equation of order N includes DVERLK subroutine (Runge-Kutta-Venmer fifth- and sth-

terms of order N + I on the right-hand side of Eq. (13) which, order numerical integration method). The results of this solu-
in tdis case constitutes an ushnte coupled set of mnoment tion WilD be presented in Sec. HI1.
equations. In order to cdose this inhite hierarchy, two differ-
ent closurte shmswill be applied. These schemes are based
on the properties of the joint cumulant (or semi-invaiiants). It Ne..Gsasma Csn eulm.
should be noticed that the response coordinsates are not The Gaussian closur solution is analogous to the linearized
Gaussian-distributed, and any closure sceeshould take into solution of nonlinear mechanics problems. In view of the
account the deviation of the response from being Gaussian. unherenat nonlinearity of the system (as well as the random
However, if the response coordinate an assumed to lie tie coeflicientis), the response processes will be nion-Gaussian

oweary- Gaumns. then all joi caimlants of order preater and. in thas case, all Inlrorder cumutians of order grester
than 2 vanish identically, and the rsone statistics can be than 2 wMn not vanish. The probability density of non-Gauss-
described in tames of first- and second-order moments. This ian proesses can be expressed in terms of the Grasm-Charlier
approach is referred to as Gausmn closure sc+-m and is expanmon or Edgeworth asymptotic series. It has been showin
appliled for the present system by setting the thaird-order joit (in Rdf. 23) that rod conerect in the Edgeworth expan-
cumsulat to zero, ie.. iSo can he achievt4d by retininag the first few terms in the

series. In thi paper the non-Gaussian closure solution will be
obtained by seting the fifth-order joint cumuslant to z~ero, .e.

- 1: El X, I E( X, X. X~x.]

ofsae gsrased by the indicated exprsso.m withoust + 2~ E E X,JI E( X El x. X,X.I
&&flosn pemtaft aot adims. For examle,

~E(XI E (X, X. I E( XI E (X, X&1 + E( , I EArX. -)E (X, 1)E IX, E XIE [X, X.

The Gueindm cloare scheme will lead so 14 climed moment E I l AX, I E IX, XX.,
equisita. wh- cmas of fmn equutios for thr fast-order
usmmms aid Nom equatios for t aend-order momens.w
These equastsisw-2 be miegmssd mmuayby usift the + 24E XI E[ XIEf XIE[ XJIE[ X. (16)
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This procedure requires that 69 differential equations be gen- LIVI EI
erated from Eq. (13). Thiese equations consist of 4 equations 2
for first-order moments, 10 equations for second-order mo- .- 00
ments, 20 equations for thirdl-order moents, and 35 equa-
tions for fourth-order moments. These equations will be solved
by numerical integration by using the IMSL DVERK tub- -.-0.03
routine. The results of this solution, together with the Gauss-
ian closure solution, will be discussed in Sec. MI.

ElYl
lM. Statistics 0f the System Respons IA0 - , -0.02

The statistics of the system response are determined for
three different case of system parameter unicertaines. These
ae 1) damsping random variation, 2) stiffness random vans-
nion, and 3) damping and stiffness variations. The results of U el-

the numerical integration are presented and discussed in the _ _ _ _ _ _

nespons of time Symons Wot Ram Doming
The time-history response of the displacement mean squares L.456 0

of the system normal coordinates is shown in Figs. 2 and 3 Fig. 7 Nimo-olo. nmpsi of .mve odmmin to now-
according to the Gasssan and nion-Gaussian closure soiu- Gai dow. Tseo s Wmand esmom - desromiad
tiona. respectively. These figures display both the transient I7 - mssm wfth randm 01s D, - 0,, - 01D. 2N
and steady-state responses for exact internal tuning ratio 04
r- 0.5, damping ratios t, - t2- 0.02, mass ratio ms1/, - 0.2,

excitation spectral density 2DA - 0.06, and damping variation which represent the upper and lower limits of the quasi-sta-
density D., - D- 0.1LO. Both responses show that the tran- toavresponse as reflected in the steady-state time-history

siet rspose eve isgretertha th Stadystae lvel Itis response shown in Fig. 2. The non-Gaussian solution. on the
seen that after a repons period of 1r - 1000,. the meanm other hand, is shown by one curve for each mode since the
squsars fluctuate betwe two limits for the Ganssan cour repos achieves a stationary response. It is seen that the
solution while they are strictly stationary for the non-Gass- mea square of the first normal mode approaches the response
tani closure 5011555055. Ibis differnce betwen the two solutions of the single degree of freedom as the intenal detuning is well
is due to the fact that the non-Gansam closu re a de- removed from the exact internal resonance r - 0.5. The damp.
quately models the system nonlinearity. The stassonarity of ing random variationa has a remarkable effect on the Gaussian
the response of coupled nonlinear system was verified by closure solution, and the effect is less pronounced in the
Schmidt.' 4 

who used the stoclastic avetlgsn method. The non-Gamiaen closure solution. In the nion-Gaussian solution.
influmece of the imtial conditions, on the time-ssaosy response th danm vaito results in a slight decrease in the
is found to have no effect o the steady-state response for mesn-suare response of the first mode and a corresponding
both solutions; however, the effect exists only during the increase in the second mode mean-square response for r < 0.5.
transient period. For r > 0.5 the effect is reversed. It is found that the damping

The nunmeric&: integration ha. been repeated for various fluctuation 4me not have a uniform effect on the response in
values of internal detuning parseer r in the neighborhood the case of Gasian dlownr solution; however, the region of
of the exact internal resomma: r - 0.5. Thme ress are shown the autoperammetric interaiction becomes narrower.
in Ftp. 4 and 5 for Geno and non-Gomin closur
solutions, respectively. These figures include esponse curves Respon 0 an Srn am am S~
for the case of deterministic system (i~e., the systeni wsth Figures 6 and 7 provide a comparison between the mean-
conat daomn codkints) for compaison. The Gatmsin aquas Iao of the systes obtained by Gaussian and
clomute solutionm is indicated by two curves (for each imode). non-Gomuian closure solutions, respectively. ThIesos of
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EfY~1 IY~I9, acordng to Gaussian and non-Gaussian closure solutions.
respectively. Based on the results of the previous two cases. it

2.0 00 is clear that the system response is mainly dominated by the
stiffness random variation.

s~s 0.0 IV. conclussiona
The influence of the damping and stiffness random vans-

tion on the random response of structural systems with auto-
"> ~ parametric interaction has been determined. The Fokker-i.0e-00 Planck equation approach has been used to derive a general

differential equation for the response moments. This equation
I constitutes an initite coupled set of moment equations. which

0.0 EI~l .81are truncated by two closure scheme. These closure schemes
are based on the properties of the statistical ciamulants. The
first. refierred to as Gaussian closure. assumes that the re-
sponse distribution does not deviate sigificantly from nor-

_________________manls The other scheme takes into account the deviation of the
a."5 0.6 GA response distribution from being Gaussian. The results of

Fitg. I %it-sqn-. miliiiiii of atnlmod" ateoift to GMaisin both solutions are calculated and represented as function of
doug. whluie Vs iesm raommm - , isessnstie sysw . the internal detuning parameter. The Gatissian closure solu-
syse afth mis. da aip mi sitm D,, 04 &- 6 01,2D4- tion results in a quasi-stationary response, whie the non-

0.60.Gaussian closure solution is strictly stationary It has also
been found that the random variation of the system stiffness
has more considerable effect thsn the effect of damping varis-
tion on the response mean squsresi. One last point is that the

EI~IEIl: model selected in this study is a simple structural system in
2.0- 0.04 which several characteristics resemble those encountered in

aeroelastic strtuctures. such as a wing with external store.
However, the investigation did not consider the interaction
with random aerodynamic forces that results in stochastic

l~a0.03 nonlinear flutter. Currently, the authors are involved in a
research program supported by the AFOSR to examine the
stochastic flutter of real nonlinear models wings and panelsEwYl 1,2under random aerodynamic loading.

E1Y1 Actnowledgmant

i~ 4 0.01 This research is supported by a grant from the Air Force
Office of Scientific Research under Grant AFOSR-85-0008
Dr. Anthony Amos is the program director.

5.40 r. C R ferem

Fig Mem-siom r~oiiiiead w" mes, o 10111 Boous. V V.. 7te DYnwc Stabity of Elastic Svstei,ss Hoden-

Gai elm. sohijo vs Wftn ,noiniii - Day. San Francsco, CA, 1964.
s111;- syas with nmm -6 i sea-1 D" - -. 

t
llvan-wanowsk, R.M.. Resonance Oscillations in Mlechancal Svi.

11.10021-.6. . tem., Elsesser. New York. 1976.
'iayft.& H. and Mook. D.T. Nonlito, Oscillations. Wiley.

Inteseene. New York. 1979.
4Minorsky. N., Noiear OsrsAarwsu. Van Nostrand. New York.

the system with stiffness random fluctuation is shown by 1%
dotted cures, while solid curves belong to the response of the , Basr, A.DS. and Done. G.T S.. "Parametric Oscillations in Aircraft
deternistic system. It is seen that, for both solutions, a small Structures," Aereeassscallowv'al, Vol. 75. 1971. pp. 654-65&
random fluctuation in the system stiffness (D, -Dk-011O) 'Barr A.D.., "Some Developments in Parametric Stability and
results in a substantial dispersion of the response statiaticlt Nonlinar Vibratio," Procrfdip of the iteraional Ccnference of
is known that under random stiffness; variation th Reeom Adt.'.es in SinwtrWs lDtnoa. Southampton, England., 1990.
eigenvalluea; will be randoin." Previous ietiaon'of pp1 54-Mll
the response of liona systems (with parameters represented by Greewood DJ 197a7c. ttame.PeiseHl. njw
random variables) showedl that a small disiperin in the aartelt, EJ., "Effot of Structural Nonliisseie on Aircraft
stiffnless resulted in a considerable dispersion in the sysete Vibration sand Flutter," AGARID Rep. 66S, Sept. 1977.
response. It is ailso evident fronm both Fip. 6 and 7 that the 'Dreitbaeh. E.J., "Riluer Analysiu of an Airplaue with Multiple
effeet of the stiffntess random variation is to increase the level Strututral Nonliteitiis in the Conitrol System," NASA TI' 1620,

aoprth e toe mentt Howeve th es larrtic of "'e Feae G.. Chests. L.. Saburl. 0., sad Lova, A.. "Effects
autoparametrie ibtration. aoweer," ar lesefciei h of Nonlineulity n WiWgSinee Flutter," AGARD-R487. 1900.
arscaae tifsc eaton athriu "r less't efet-ei he. Jr.. Haw ILL. god Boldin, R.M., " F-16 Flutter

presneeof siffess andm vaiaton.SuiPPIesMo.11 Syst9- lflvestuganen" Pmmii 5 p of the .1AA1
Conlilo D=f mi 9U~o V.445m ASME/ASCE/A ifS 21it Savrrem, Singesl Dym,an, and

The ysu men-suar , ofthesysem ithequl P41auk Confeece, Seattle. WA, May 19W0, pp. 620.634
The ystm 03si-qti~t f~p~.C5 f te sytemwithequl t Read. Wit, I114 Peepbne, 1.1. Jr., and Rissyan, ILL.. "Diou.s

levels of spectral densities of the damping and stiffness ran- pler Py": A Simple. Effective Wing/Stmw Suippemo ar,"d ofna
dom parmeter (D, - Dk5 .1D6) ar shown in Fip. S and Aiftvnf, VOL 17, Mucrh 19.0, pp. 206-211,

L



338 Rt. A. IBRAHIM AND H. HEO AIAA JOURNAL

"Des.,ris R.N. and Reed. W H 111. 'Win&/Store Flutter with Closuare." Journal of Applied Mechanics. Vol. 52. No 4. 1985, pp
Nonlinear Pylon Stiffness." Journal of Airc-raft. Vol. 18. Nov 1981. 965-970.
pp. 984-987. "iSchmidt, G., -Probability Densities of Parameincally Excited

"Struble. L-A, Nonlinear Differnual EqAWanoeu. McGraw-Hill. Random Vibrations'" Proceedingi of the IlTAMA Simpotiant on Si-
New York. 1962. chatrc Problems in Dyniptc,. edited by B.L. Clarkson. Pitman.15

Nayfeh. A-H.. Pernuibation Methody, Wiley. New York. 1973 London. 1977. pp. 197-213
'Ibrahin,. RA. Parameric Ra~ndomn Vibration. Research Studies 2'Scbeidt. 1. and Purkert. W.. Random Eigeiwalae Prrblemr Else-

Press. Wiley. New York. 1985. r e ok 93
"Soon& T.T.. Random Differential Equations in Science and En- ""BogdaNew or. J1. nd83 a. P Dvnatmcs of Somec Dis-

ganeerng. Academic Press. Orlando, FL. 1973. odnl 3L.adCee .F
"Irhm L-A. "Structural Dynamics with Parameter Uncrtin- ordered Linear Systems." Internaional Jourialo MecWhanical Science.

ties." Applied MerchantcicsRees. Vol. 40. March 19117. Vol. 3.,1961. pps. 157-169.
"'Barr A.D.S, an Aahwoeth. L-P.. "Parmetuic and Nonlinear 27Chin pC. and Sooka.W W, "Impulse Respoitseof a Dynamic

Mode Interaction Behavior in the Dynamics of Structures." Depart. System with Statistical Properties.' Journal cy Sound and l,hratiin.

ment of Mechanical Enginerting University of Dundee. Scotland. Vol. 31. 1973, pp. 309-314
Rep. AFOSR 74-2723. Dec. 1977. "'Chen. P.C. and Soroka. W.W . 'Multi-Degree Dvnamic Response

sHaddow. A.G.. Baff. .D S.. and Mock. D.T.. "Thoretical and of a System with Staistical Propemtes.' Journal 4~ Sound and Ylbro-
Experimental Study of Modal Interaction in a Two-Degjee-of-Free- nim. Vol. 37. 1974. pp. 547.556.
dom Structurte," Josrrial of Sound and Vibration. Vol. 97, No. 3.1984. 

25
Piraatbloter. P.H. and Beadle. C.W. 'D..mi Response of Sirtic-

pp.1451-473.
Ibrahim. LA. and Hen. H.. "Autoparametric Vibratioe of Cosi- turvis with Statistical Uncertainties to Their Stfnesss Journal ot

pied Beanm under Random Support Moutsn" Journal of Vibration. Hasoni S and Br.ADS."TeAtprmti Vibration.Vl4.19.pp 473
Acosics. Stress, and Reliability. Vol. 108. 1986. pp. 421-426. t~re.RS n ar D. h uoaaen irto

" Hen. H.. " Nonlinear Stochastic Flutter of Aeroelastic: Structral Absorber." Journal of Engineering for Indmrv. Vol 94. 1972. pp

Sysrns." Ph.D. Thesis. Texas Tech University. Labbock, TX Dec. 119-125.
1985. "Ibrighim. R.A. and Roberts. 1.W.' "Broad Bsnd Random Exctta-

"tbrahim. RA.. Soundanraalan. A.. and Hoo. H.. "Socasic Re- tion of a Two Degree-of-Freedom Sysem with Autoparanseiric Cou-
sponse of Nonlinea Dynamic System Based on a Non-Gaussian pliq&" Journal of Sowid ard Vibration. Vol 44. 1976. pp 335.348



Structural dynamics with parameter uncertainties
R A Ibrahim
Department of Mechanical Engineering, Texas Tech Lniverstiv, Lubbock TX 79409

The treatment of structural parameters as random variables has been the subject
of structural dynanucists and designers for many years. Several problems have
been involved during the last few decades and resulted in new theorems and
interesting phenomena. This paper reviews a number of topics pertaining to
structural dynamics with parameter uncertainties. These include direct problems
such as random eigenvalues and random responses of discrete and continuous
systems. The impact of these problems on related areas of interest such as
sensitivity of structural performance to parameter variations, design optimiza-
tion. and reliability analysis is also addressed. The paper includes the results of
experimental investigations, the phenomenon of normal modes localization, and
the effect of mistuning of turbomachinery blades on their flutter and forced
response characteristics.

1. INTRODUCION

The concept of uncertainty plays an important role in the (1958). Anderson showed that the electron eigenstates in a
investigation of various engineering and physical chemistry disordered solid may become localized and results in a reduc-
problems. In fluid mechanics, for example. the inaccuracy of tion of metallic conductivity, In structural dynamics with
measurements is called "'uncertainty" which differs from the parameter uncertainties, irregularities may inhibit the propa-
concept of error (Kline. 1985). An error in measurement is the gation of vibration within the structure and the vibration modce
difference between the true value and the measured value. On become localized. The similarities between the propagation of
the other hand. an uncertainty is a possible value that the error vibration in an elastic system and the conduction of electron, n
might take on in a given measurement. Because the uncertainty a solid is discussed by Hodges (19821, Hodges and Woodhouse
can take on various values over a range, it is inherently random. (1983). and Pierre et al (1986). Several problems in physics and
In control theory, the differential equations of control systems physical chemistry pertaining to crystal lattice dynamics Acre
often involve uncertain bounded state variables. The parameters reviewed by Elliot et al (1974) and recently documented in a
of transfer functions of certain models usually vary with a monograph by Bottger (1983).
certain degree of uncertainty (Ashworth. 1982). Thus a prob- In structural dynamics, uncertainties arise from two main
abilistic transfer function can be defined with uncertain param- sources (Prasthofer and Beadle, 19751. The first is a statistical
eters and can lie anywhere within the ranges which are de- one and is due, for example. to the stiffness or damping
termined from simulation tests. The identification of uncertain fluctuations caused by random variations in materal properties.
parameters has recently been examined by Skowronski (1981, randomness in boundary conditions, and vanations caused b%
1994). manufacturing and assembly techniques. The second is nonsta-

Another class of problems involving parameter uncertainties tistical and is due, for example, to the inaccuracies and assump-
is the random heterogeneity of real media which possess proper- tions introduced in the mathematical modeling of the structure.
ties that are described in a probabilistic sense. More specifically, In the first class the mechanical properties of dynamic systems
these properties vary randomly with respect to time and posi. are subject to a certain degree of uncertainty because the
tion. and thus constitute a random field. The theory of wave physical properties of their elements are not measured exactls
propagation in random media is very complicated and involves In addition, the physical properties can experience variations
partial differential equations whose coefficients are random with the passage of time as a result of wear and tear or just
functions of space and time. The difficulty of random wave inherent deterioration. These properties should be modeled as
propagation problems stems from the fact that the solution of a random variables with a probability distribution representing
linear partial differential equation depends nonlinearly upon the distribution of the measured values. This modeling results
the coefficients (Chernov. 1960; Frisch. 1968: Sobzyk, 1985). in random eigenvalues. eigenvectors, and random responses of

In physical chemistry the problem of determining the vibra- the system in question. The analysis of random eigenvalues and
tional properties of randomly disordered crystal lattices in- cigenvectors has been a subject of several studies by mathema-
volves the calculations of the frequency spectrum, electronic ticians and engineers and will be reviewed in section 3.
energy levels of binary alloys, thermodynamic properties of Figure I shows five examples of structural systems involving
alloys, isotropic mixtures, and other solid state phenomena. Of parameter and load uncertainties. They include "almost" peri-
particular importance is the "normal localization" or "confine. odic structures, similar component subsystems, multi-span
ment" phenomenon which was first reported by Anderson beams, rocket fins, and turbomachinery rotors. The rocket fins
ASME Book No. AM1. Reilnted from
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FIG. 1. Examples of disordered systems.

are not usually identical in their areas and each fin has some systems. In particular, they may cause the occurrence of mode
misalignment with the rocket longitudinal axis. For the case of localization which can be used as a means of passive control of
turbomachinery rotors, there is always some mass and stiffness vibrations. In civil engineering the mechanical and strength
eccentricity in the disks. Parameter variations exist in disk properties of the material vary from one point to another point
blades and result in corresponding variations in the individual and are seldom prone to certain in situ measurements but onl%
natural frequencies of the blades. This problem is known as to indirect estimat - (Augusti et a], 1984). The uncertainty of
mistuning (Srinivasan. 1984) which may have a significant effect these properties has a direct relationship to the reliability of
on the forced response amplitude of the blades and also in the such structures. These uncertainties are usually manifested in
value of the flow speed at which flutter of the blades occurs, the applied loads, stiffness, and theoretical models that are used
Other examples include buried pipelines, railroad trackes, and to describe and relate loading and resistance. The design of
interconnected girders. The uncertainties in these systems affect structures under conditions of uncertainty implies a balancing
to a large extent their design and operating performance. decision between risk of failure and cost or weight (Ang and

It should be noted that parameter irregularities may cause Tang, 1994: Frangopol. 1986). The risk is an unavoidable
significant changes in the dynamic characteristics of structural consideration for structural optimization problems. It has been
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customary in most reliability studies to measure the risk by the 3. RANDOM EIGENVALUES
probability of failure lie, the likelihood of occurrence of some

1pecified limit state). On the other hand, when restrictions and
constraints of the design are imprecisely described, the design 3. 1. Basic concept of random eigenvalue
objective functions become fuzzy (Zadeh, 1965, 1973: Brown. The value of the natural frequency of simple single degree-
1980: Brown and Yao, 1983). Recently, the fuzzy set theory has of-freedom systems is given by the square root of the ,tiffness to
been applied in milti-objective fuzzy optimization design of mass ratio. This value is assumed by constant for identical
ship grillage stru,:ures (Gangwu and Suming. 1986). systems. However, experiments have shown that this value

The degree of sensitivity of structures to either deterministic varies randomly (Mok and Murray. 1965) because in realits the
design changes. or stochastic parameter variations is of great physical properties of the elements can neither be measured
importance to the structural dynaicist. In particular. it is exactly nor manufactured exactly. Thus. the eigenvalues are
essential to determine if small perturbations can result in sig- random variables whose statistical properties are determined b,%
nificant changes of the free or forced response amplitudes. This the random coefficients of the inertia and stiffness terms of the
sensitivity analysis is of great concern to those who are involved equations of motion. Consider for example the natural frequent,

in the control of large flexible space structures (MeiroVitch ei al. of a simple mass-spring system
1983: Nurre et al. 1984). These structures possess several modes
densely packed at low frequencies. When they are descretized,
model errors occur and the free modes of vibration cannot be A = ,o- k,m.
determined accurately. Thus when a control system is designed the variation of A due to variations in stiffness k A , K .ind
for natural frequencies whose values are assumed to be exact. ma ii of A e exressf s a Tl sre

the model errors and structural uncertainties may deteriorate mass m - F - Sm, may be expressed as a Taylor series

the performance of the control loop, and may even make the dA 8A
system unstable. This problem results in what is known as A = A -A - -8k - - d m
robustness, ie. a control system is termed robust if it Is rela- 8k dnt
tis.elv insensitive to model errors and structural uncertainties. I .-A I 3'-

This paper provides a review of the recent theorems and - - - 8k F - --- . . . .

results pertaining to structural dynamics with parameter uncer- - " -(
tainties. An early account of the subject was provided by Soong
and Cozzarelli (1976). Three main problems will be addressed, where overbar quantities refer to mean values and , A pi

These are: When the variations 8m and 6k are random variables the
natural frequency will be a random variable. The mean and

i. Random eigenvalues. variance of A can be evaluated as follows

2. Random response characteristics, and I d
2x I d'A

3. Design optimization and reliability. EI[ AE =8 - .k

Before reviewing these three problems the differences between and
parametric random vibration and structural dvnamics with dA " ,I
parameter uncertainties will be discussed first. El)A- An]= -m--El ,k']- ' Et i,,: I

2. BETWEEN PARAMETRICALLY EXCITED AND - A -El , i

DISORDERED SYSTEMS dk dm

It is very important to distinguish between two types of I 1

parameter variations encountered in structural dynamics. The 4 ' 1 -k_ A I
first type arises due to random parametric excitation of systems
with essentially fixed properties while the second class is inter- 

2
A A ,

nal and is associated with the system when its parameters are 2 - ) l6A -
represented in a probabilistic sense. In the former case the
system equations of motion are stochastic differential equations The same is applied when the mass moment of inertia
with random coefficients represented by random processes included in the equations of motion. Collins and Thomson
IIbrahim. 1995). while in the latter case the equations of motion (1967) derived the statistical characteristics of principal mo-
are differential equations with random parameters represented ments of inertia and principal axes directions.
by random variables (Soong, 1973). The methods of treating Generally. the structural dvnamicist is interested in dc-
dynamic systems under parametric random excitations are dif- termining the probability that one or more eigenvalues lie in a
ferent from those used in solving differential equations with given range or less than a certain value i Boyce. 196). Houeser.
random variable coefficients. Parametric random vibration is the probabilistic description of the eigenvalues and the eigen-
basically a combination of the theory of stochastic processes. vectors has been examined for a limited and simple class of
stochastic differential equations, and applied dynamics. Systems problems. In most cases, it is possible to calculate the statistical
with parameter uncertainties (referred to in the literature as functions (such as expectations, variances, and covanance func-
'disordered systems"), on the other hand. involve boundary- tions) of the eigenvalues and eigenvectors.
value problem and random field theory (Vanmarcke. 1994). The The random eigenvalue problem has been examined for a
term "disorder" has been extensively used in the literature to limited number of linear discrete and continuous systems The
distinguish between the case of random perturbation of the treatment of these systems is based on the analysis of random
system parameters (described by a probabilistic law) and the matrices and random differential operators (Scheidt and Purkert.
case when these parameters are perturbed in a deterministic 1983). The next subsections will review the methods and main
sense, results reported in the literature.
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32. Random eigenvalues of discrete systems random variables t,:

The statistics of random eigenvalues and eigenvectors of +
discrete systems may be determined by using one of three main F Y_

approaches. These are the transfer matrix method, the random
perturbation method, and the Monte Carlo numerical simu-
lation algorithm. The transfer matrix method (Kerner 1954, 1 ... (8a)

1956; Soong, 1%2) utilizes a perturbational expansion of the
random eigenvalues in terms of the random perturbations of the v
system parameters. The perturbation method is based on an a- + fE, for small , n - I 2.. N (8b)
asymptotic expansion and combines the ordinary perturbation -
and multivariate statistical analysis. The multivariate estab- Let the random variables 4, be statistically independent. identi-
lishes the probability distributions of random eigenvalues in cally and normally distributed with zero mean. This means that
terms of the distributions of the matrix coefficients in the the probability density function of each is
equations of motion. The Monte Carlo method, on the other I
hand, generates a random sample of the system random param- p(, - - exp -c /2o-. (9)
eters which are used for computing numerically the eigenvalues ov2r
and eigenvectors for each set of parameters in the sample. where a,- is the variance of the random variable c.
Monte Carlo simulations are expensive since they require a From the theory of random processes (Laning and Battin.
large number of numerical solutions to define the probability 1956). it is known that if the random variables r, are indepen-
level at the tails of the distribution. This disadvantage becomes dent and normally distributed the random eigenvalues will he
evident when one deals with large or medium size systems normaly distributed with mean value 5,, and variance
where numerical sinulations become uniealistic on conventional a, , T
digital computers. The first two methods will be outlined in the merits ofTthe probability density function of thee, i e
next two sections. I
311. raraersmahrix method p(w)- --- xp(-w -- i2j,/2 ai (10)

This method was first developed for disordered periodic J2
lattice systems by Kerner (1954, 1956). It was adopted by Soong Figure 2 shows p(win) and the standard deviation a for a
and Bogdanoff (1963) to examine the statistics of the random spring-mass chain of 10 degrees of freedom with o, - 0.05. It is
eigenvalues of disordered spring-mass chain of N degrees of seen that the randomness of the masses results in a considerable
freedom of the type shown in Figure l(a). Basically the method dispersion in the high frequency region. The standard deviation
is an extension of the transfer matrix developed originally for of the random eigenvalues increases with the standard deviation
free vibration of deterministic discrete systems (Thomson. 1981). of the mass perturbations caccording to the formula (Soong.
The method transfers the displacement vector IX), of the jth 1962 a
mass into next mass displacement vector [X]. i. ie

(X},-[I+T X,.. (4) a/a,- Vi,: (Ill

where I is the unit matrix and [I + TI is the transfer matrix. The 3. 22 Random pertaahatieo method

first displacement vector (X), is related to the last displace- The perturbation method for the deterministic eigenvaluc

ment vector (X) v by the relationship problem is well documented (Cole. 1968: Meirovitch. 1980)
The method has recently been extended for random eigensalues

vi 1 by Scheidt and Purkert (1983). The eigenvalues of discrete
(X o IH[I + TI,] (X) . (5) systems are usually determined from the conservative part of

the system equations of motion whose eigenvalue equation is

In order to demonstrate the method, a periodic disordered given in the form

chain with random masses and constant equal springs of stiff- [K(s) - A M(s)) -(0). (12
ness K will be considered. Let the random mass be defined by where K(s) and M(s) are symmetric stiffness and mass matrices.
the expression respectively. The elements of these matrices are taken from the

m, -T(l +,), (6) entire sample space S. ite. sCS. , and (x), are the jth
eigenvalue and eigenvector, respectively The random matrices

where fi is the mean value of the mass and c, is a small K(s) and M(s) can be written as the sum of deterministic and

random variable with zero mean. random matrices
The transfer matrix can be written in the form K( a) - K + k £ ),

M(s) -M , A(s). (13)
[l+TI,-EI+T]I+[E], (7) where (s) and if(s) represent random fluctuations in the

stiffness and mass '.assces, respectively with zero means such
where (El, is a perturbational transfer matrix which results that
from the random perturbations ii,

The characteristic equation can be established from eq. (5). < C'
The roots of this equation are the system eigenvalues w.. In I ,. '

order to determine the statistical properties of the eigenvalues it and
is necessary to express w,, in terms of the random variables c,
It will be asumed that the range over which the values of i, are S) A,,(s) <,. (14)
distributed is small and , can be explained in powers of the
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Alternatively. the problem can be stated by transforming eq. vectors are
(12) into the standard form E [X,(s)] - . E[o,,aj/I . (22)

[A-All{x) - (0). (15)

where A is the system dynanic matrix which is symmetric E[x( s), 1 - E (.1 A )
positive and has the random perturbational form - E , ,,

A(s)-X+ &(s). (16) -E[{Z1,. .. (23)

The deterministic matrix A has the simple cigenvalues where Z,, -\ - ),. Z},. - (Z,,. Z., .. Z,,;'. and the ele-

1
< 

.. 
<  (7) ments of { Z ),: are given by the expression

while the random matrix A(s) has the random eigenvalues (.) aa a

Ai(s) <A,(s)< .. <A,( V). (18) X X I

it is clear that the existence of the first two moments of the for tis and ( Z, ) =
eigenvalues XA(s) is implied by the existence of the first two On the other hand. the correlation relations of the etcsen'ai-
moments of the elements of A(s). ues and eigenvectors up to the (k - l)-th order in the perturha-

The eigenvectors (x), are normalized by the relation tions a are

(x,.x,)-, (19) R,( k E X A , I] - E[,.,,

where lx,. x,) denotes the scalar (or inner) product of the same
vector ,.ie) x )(x,. Introducing the two expansions E [

a,
k-i

where {i), -(0,0...0.1'.0 ... ) is the normalized eigenvec- , a a,,a, a,,
tor associated with X, A , (s) and (

1
(s)),, are the contribu- ,.N-, a(24)

tions due to the perturbedi elements of a(s). From the analytical ,5-
deperdence of A, and (x), on the elements of a(s). Scheidt and "
Purkert (1973) showed that expansions (20) and (21) converge l Ea a a,, a,,a
at least for sufficiently small values of the elements of ats). The A (A

homogeneous terms A ,(s) and (x(s)) A up to fourth order are
given by Scheidt and PIrkert (1983). These terms can then be + E
used to determine the expectations and correlation relations of , ( E[ ,.,.
the random eigenvalues and eigenvectors. If the correlation , /A

between the elements of afs) - [a,,] are only given, then up to 1-k

first-order perturbation the means of the eigenvalues and eigen- - Ef a,, a,,) E[ aA a j)
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The analysis is called first order perturbation if first-order Schiff and Bogdanoff (1972a. b) derived an estimator for the
terms in expansions (20) and (21) are retained and higher-order standard deviation of a natural frequency in terms of second-
terms are excluded. It is second order if terms up to second order statistical properties of the system parameters. The de-
order are kept. However. second-order perturbation is tedious rivation was based on the mean square approximation devel-
and involves multivariale statistical analysis. Most of the oped by Bogdanoff (1%5. 1966).
analyses reported in the literature deal with the first-order It may be noticed that the statistical properties of random
perturbation. eigenvalues are usually based on the assumption of normal

Problems involving a random symmetric matrix with multi- distribution of the system random parameters. However. for
pie eigenvalues of the unperturbed matrix have been treated by correlated non-Gaussian parametn the analysis can be per-
Scheidt and Purkert (1983). The analysis consists in the formu- formed in terms of another set of Gaussian random parameters
lation of a convergence condition for the perturbation expan- which are evaluated by uing the Rosenblatt (1952) transforma-
sions. tion. This transformation has extensivelv been used in reliabil-

Collins (1967) and Collins and Thomson (1969) considered ity analysis when the performance function is nonlinear. This
first-order perturbation and derived the eigenvalue and eigen- issue will be addressed in detail in section 51.
vector statistics of a multi-degree-of-freedom system in terms of
the covariance matrix of the system elements. With reference to
the eigenvalue eq. (12) they showed that the variations in the 33. Random egenalms of cndiumus systems

mass and stiffness matrices result in the following first order .3.1. maO of 
variations in the eigenvalue and eigenvector, respectively: Continuous system may involve uncertainties from two

, a- a, main sources. These are (Boyce and Goodwin 1964):k,-(25)
1- 3k, 1- 1 am, () Uncertainties in the geometry and the material proper-

ax x,, ties. The random variation in space dependent parame-
,-' Y - k -- ) + -m, - F.,) ... ters results in variations of the differential operators

.. 8k, ,- da, governing the free vibrations of the structure.
(26) (ni) Uncertainties in the support mechanism of the system

(or the boundary conditions).
If the elements of the mass and stiffness matrices of eq. (12)

are random variables with means c and ih and variances o The uncertainties of the first class constitute a random field.
and a,,. then the expected eigenvaies and'eigenvectors are 4, According to Vanmarcke (1984) the behavior of disordered
and i,,- respectively, and the variance of the eigenvalue is systems is governed by two general laws. The first is a statement

aof "conservation of ucrtainty" as measured by the product of
ai, -Var(,,) - - . cov( k,.k,) the variance by the scale of fluctuation of the property in the

s - ki , random field. The scale of fluctuation is taken as the area under
the correlation function. This product remains invariant under

A . linear transformation that preserves the mean. The second las.12j '- cov(k_, m,)-k, am, states that the degree of disorder of a homogeneous random
Sk ifield, as measured by the direction-dependent bandwidth mea-

X, ax, sure, tends to increase when a random field is subjected to local
- - cov( in,. m, (27) aggregation.
am, Bn, For the two classes of uncertainties the random eigenvalue

where has been determined for a limited class of dynamical systems
These include elastic strings and bars (Boyce, 1962: Goodwin

cov(k k,)- f_ k,--!)(k,_--,)p(k,,k,k, and Boyce, 1964) and elastic beams ( Boyce and Goodwin 1964:
__ Bliven and Soong. 1969: Hoshiya and Shah. 1971: Shinozuka

- p,,o5 ,J64,. (28) and Astill. 1972: Vaicaitis 1974). Boyce (1968) outlined a num-
ber of techniques for determinng the statistics of the eigenval-

and p(k,. k, is the joint probability density function for K, ues of systems described by partial differential equations and
and K,, and p,i is the correlation coefficient for k, and k,. boundary conditions involving uncertainty in their parameters.
Expressions for cov(k,, m,) and cov(mm,)follow the same These differential equaions are of order 2 n and usually written
format of relation (8). in the form

For a simple chain of equal springs and masses with uncor- .,(x) -,N,( x).
related random masses or with random uncorrelated stiffnesses,
Collins and Thomson showed that the standard deviation of the subject to the boundary conditions
frequency is governed linearly with the standard deviations of I,( w) -0. t - 1.2... 2n. (30)
the masses and stiffnesses. The results were confirmed by an
independent Monte Carlo simulation and were very close to where Y, -. and 4 are differential operators (with respect to
those obtained earlier by Soong and Bogdanoff (1%3). How- the spatial coordinate x) whose coefcients are random vari-
ever, these linear relationships disappear when correlation exists ables. w(x) is the displacement of the system at x. Equation
in the masses or stiffnesses and the eigenvalues are not closely (29) involves values of w and its first 2n - I derivatives at the
spaced. Recently Pierre (1985) considered two different discrete end points of the interval in which solutions are sought. The
systems and employed a first-order perturbation to solve for the eigenvalue problem dened by eqs. (29) and (30) is assumed to
statistics of their eigenvalues. The first system is a mass-spring be self-adjoint and positive defimte. The investigation of ran-
chain with random mass and the second is a chain of coupled dom eigenvalues has been carried out via analytical or numen-
pendula with random lengths. His results were found identical cal approaches. The nmerical methods include the Monte
to those obtained by Soong and Bogdanoff. Carlo simulation and soehastic finite element methods. The
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analytical treatment of the random eigenvalue problem of svs. Boyce (1966, 1980) considered a Sturm-Liouvlle problem with
terns described by eqs. (29) and (30) is outlined by Boyce (1968) a stochastic nonhomogeneous term. In their recent monograph
and Scheidt and Purkert (1983). The mathematical methods Sbeidt and Purkert (1983) analyzed the moments of the ei-
which have been used to determine the statistical moments of genvalues and mode shapes of random matrices and random
eigenvalues are classified according to whether the statistical or ordinary differential operators. The calculations of these mo-
nonstatistical part of the analysis is performed first. One class merts were based on perturbation expansions, and so required
consists of first expressing the solution in terms of the system the random tems to be appropriately small. Day (19801 de-
parameters, without regard to whether these parameters are veloped a number of asymptotic expansions for the random
random or deterministic. Having obtained such a solution, the eigenvalues and eigenvectors of continuous systems.
statistical properties are then determined. According to Keller The concept of the Wiener field, which is obtained bN
(1962, 1964) this approach is referred to as "honest" and the replacing the time variable of the Wiener process by a space
solution can be determined by using one of the following coordinate, was adopted by Wedig (1976. 1977) as a basic
techniques (Boyce, 1968: Scheidt and Purkert, 1983): model for randowly distributed loadings or imperfections of

continuous structural systems. The solution of such boundars
(i) Perturbation methods, value problems may thus be described by integral equations

(it) Variational methods. defined on the Wiener field and thus possesses the Marko%
(mii) Asymptotic estimate methods, properties. Wedig showed that these integral equations maN he
(w) Integral equation methods. interpreted in the mean square sense via the boundary and

eigenvalue problems of elastic structures with random distnh.
The ' honest" approach does not provide an exact solution and uted imperfections or loadings.
the above four methods are not sutable for every problem. For -3-2. APPit'ism
example, the variational methods are not suitable for structures The random eigenvalue of a column under axial force F
with random boundary conditions. Variational methods and shown in Figure I(f, is described by the second order partial
integral equation methods are limited because they only lead to differential equation
statements for the first eigenvalue of the system. Moreover. in 0: 8

2
w( xt) a w( ti) X(.f)s. t)

order to apply the integral equation methods. very strong El( x)'' - F - 4() s
conditions for the calculation of the mean of the eigenvalues are 4v- d.i'

required. Under certain conditions pertaining to the spatial hi)
correlation function, the asymptotic methods and perturbation and the boundary conditions;
techniques lead to the same results. The perturbation methods
have less restrictions and are extensively used in the literature. a2.( .. ) ) ( d. )

The approach, on the other hand, is called "dishonest" EI(O) a I,..- K t
(Boyce. 1967) if the statistics-of the cigenvalue problem are
directly determined by performing averaging analysis to the .(0.r .= I) 1
system's partial differential equation and its associated boundary a w( x. t) aw s. )
conditions. The statistics can be evaluated by using one of the ElR L) 0 K ... , -0.
following methods: dxa

u(L.r 0 - 0
( ) Iteration methods.

(it) Hierarchy methods IHames, 1965. 1967: Adoman. where -4 xt) is the lateral displacement at distance and time
1983). r. L is the length of the column. ElI( ) ts the flexural ,tiffne-.

and pA( x) is the column mass per unit length K. and K arc

The iteration methods are based on some assumptions for the the stiffnesses of the end spnngs For simple supports K, A
correlation relations in order to solve the averaged integral - 0. and for fixed supports K, - K. - 3c
equations of the random eigenvalue. The hierarchy methods The solution of eq. 131) may be expressed in the form
take into consideration further equations so that all statistical w( X. - X U X)exp( it) (3)
functions in question can be calculated.

In a series of papers by Purkert and Scheidt (1977, 1979abi. Introducing the following substutions
a number of theorems pertaining to functionals of weakly
correlated processes encountered in the eigenvalue problems, ' -x/L.
boundary value problems, and initial value problems were 1(X) - i[1 ( X)].
established. They treated the stochastic eigenvalue problem for
ordinary differential equations with determimstic boundary .4(X) - All a( Y].
conditions. The coefficients of the differential operator were
independently weakly correlated processes of small correlation - Ff:/FE.
spatial length. They showed that as the correlation length A-o.4L,/El,
becomes very small, the eigenvalues and eigenvectors possess
Gaussian distributions. This result has recendy been confirmed wer a(Xl anl a Xl are random variables. eq. (31) and the
by Boyce and Xia (1983). When the random terms are not small boundary conditimns (32) for mode become:
the perturbation method is no longer valid and the second term (11 + -(X)]U"(X)}" U"(X) -X[I -a( X)]L U( X) "'0.
in the Hermite-Chebychev expansion (Ibrahim. 1985) of the
distribution function will not vanish- This implies that the (34)

distribution of the eigenvalue will not be normal. Boyce and [1 + a(0)] U"(0) - (KL/EI)U'(0) -0. C(O) -0:
Xia (1985) obtained the upper bounds for the mean of eigenval-
ues through a variational characterization of the eigenvalues. [1 + &(l)JU"(1) + (KL/EI)U'(I) -0. U(I) -0.
For stochastic boundary value problems Linde (1969) and (35)
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where a prime denotes differenuation with respect to X. and greater error for the buckling case than in the vibration cae
subscript j. indicating the mode number in expansion (33). is Furthermore. the perturbatuon solution for the eigenvale an-
removed. ance can be approximated reasonably well by using an assumed

Hoshiya and Shah (1971) employed the standard perturba- mode shape in place of the unperturbed mode shape. Vascaitis
tion analysis to determine the expected value and variance of (1974) employed a two-variable perturbation expansion proce-
the eigenvalue of the nth mode by using a linearized perturba- dure to determine the eigenvalues and normal modes of beams
tion technique. They found that tle variancie of the nth natural with random and/or nonuniform characteristics which do not
frequency is proportional to the variances of the stiffness coeffi- deviate considerably from the beam mean properties A Monte
cients at the boundaries and the axial load. This linear relation- Carlo simulation was used to determine the statistical aserages
ship implies that the principle of superpostion can be applied of beam esgenvalues and mode shapes. Two cases of random
in a modified form. For the buckling case, it, when A - 0, the fluctuations of beam cross secuon were considered. For one
eigenvalue problem is reduced to determine the statistics of the particular case there was significant deviation attributed mainh
buckling eigenvalue (Auguati et al 1981.1984). Shimnuka and to the fact that gradual change in the beam stiffness %%as
Astifl (1972) conaidered the case when both K and K. are permitted. In this case the beam is "soft" at one end and
random variables. hard" at the other end.

The natural frequencies of transverse vibration of elasuc Hart and Collins (1970). Collins et al (1971). and Hasselman
beams were analyzed by Boyce and Goodwin (1964). Thev and Hart (1971. 1972) developed a numerical method for com-
considered the geometry of the croas-section of the beam and its puting the variance of structural dynamic mode properties hs
support mechanism as random variables. The statistics of the using component mode synthesis wich was formulated ongi-
cigenvalues were determined by using three different tech- nally by Hurty 01964. 1965). Numerical solution provided rea-
niques. These were the perturbation method, the method of sonable results for lower modes even when a relatively small
integral equations, and numerical solutiOn. Bliven and Soong percentage of available component modes is used. Han (14'3
(1969) determined the statistics of the natural frequencies of a developed a general algorithm for calculating the statistics of
simply supported elastic beam with random imperfections in the natural frequencies and mode shapes of structures acted
the beam stiffness. The beam was modeled as a lumped-parame- upon by an external static loading. This type of problems
ter model and the properties of the frequencies were derived by involves considerable calculations due to the fact that the
using a perturbation method. The stiffness random variation proportionate axial load in each member of the structure i,
was represented by the relation dependent upon the structural parameters whuch are random

El1 /[1l a( x)]. variables. For the two-bar truss shown in Figure 3 Hart d-
termined the first natural frequency's mean and standard de ,a-

where R! is the mean value of the beam stiffness and (x) is a lion. The influence of the static load on the statistics of the firsi
stationary random field process with zero mean and autocorre- natural frequency is shown in Figure 4 It is aeen that the
lation function given by the relation standard deviation of the natural frequency increases with the

Ela( xj)a.n( x] rexp(-i - /d),(36) asia load. The implication of this increase was further demon-
E )- d), 136) strated in Figure 5 by using normal probability denstiv func

where d is a non-negative constant known as the correlauon tion. The observed flattening shape of the probabilitN densits
distance, function with increased compressive loading shows a marked

The standard deviation of the natural frequency of the beam decrease in confidence with the magnitude of loading.
was obtained in the closed form The random eigenvaue problem of disordered periodii. beam

was considered by Lin and Yang (1Q74) They used a first-ordcr
perturbation procedure to derive expressions for the s anances

where Q n) is the nth mode natural frequency of the uniform of natural frequencies and normal modes for different case, of

beam - n,*r , Nl/mP. random bending stiffness and span lengths The natural fre-
quencies were found to be more sensiuve to.span vanation,

g( n ) - Jjs u( a 1 )sin"( ccx ,) than to bending stffness fluctuation. It was shown that if the
random variations in bending suff'ness for different spans are

xexp( -x - x.2djddxdx.. uncorrelated then there is no effect on the statistics of the

and Fri is the beam mass per unit length. eigenvalues. The effect exists only when there is a eorrelation inand istl beammas pe umtlenththe random variation in the individual spans. For a random
Bliven and Soong found that when the stiffness fluctuation variation in the span lengths it was shown that the varnace of

has zero correlation distance d - 0. the natural frequency stan- the natural frequency is inversely proportonal to the number of
dard deviation vanishes. The standard deviation was found to
reach the value of j(c)-O.5Z(n) when the stiffness van-
ation is perfectly correlated ( d - t s.

The random eagenvalue of a beam-column supported at its v
ends by a rotary springs was examined by Shlinouka and Astill
(1972). The spring supports and axial applied force were treated
as random variables. The distribution of material and geometric
properties wer considered correlated homogeneous random A ,E 2finctions The distributions of these prope-rtie were generated
by using a Monte Carlo simulation for multivanate and mul- A.,

tidimensional random processes developed originally by
Shinozuka (1971). The mean and variance of the eigenvalues
were determined by using the perturbation analysis and Monte 40 90

Carlo simulation. It was found that the application of ap-
proximate methods, such as the perturbation technique based
on exact or an assumed mode shape. causes a considerably FIG 3 Two bar truss (Hr. 1973)
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spans. The random imperfections in spatial periodicity also with homogeneous parameters. The standard deviation of the
resulted in varabilitv in the normal modes. However. due to the natural frequency of mth mode was expressed it terms of the
arbitrary choice of modal amplitude the variance of the normal (2m ith Fourier coeflicients of the random parameters and v.as
mode was not a unique function of space. represented as a vector sum of their standard deviations While

The statistics of natural frequencies of nustuned blades of a the normal modes of a homogeneous structure have a shape ,(
circumferentially closed packet of turbomachinery were ex- harmonic waves with symmetrically located nodal diameters.
anuned by Ewins ( 1973) and Huang (1982). When the bladed for a structure with random parameters the mode shapes are
disk assembly is tuned and all the blades are identical the complicated and the nodal diameters are located unsvmmetr-
natural frequencies and mode shapes are quite regular. Each cally It was shown that these modes have a shape insoli mg not
mode may be described as having a particular number of nodal only the main harmonic, but also an infinite number of harmon-
diameters. just as for an unbladed disk. However. when the ics In addition, these random normal modes are ortho.onal
blades are mistuned to a degree which might well exist in despite their complicated form. Another important feature v,
service, the mode shapes .and frequencies become irregular. In that the phase angles of random normal modes are not arbitrarm
this case the natural frequencies of the individual blades can be (as in the case of a homogeneous structure) but are random
randomly different from one another. This problem is belonging variables independent of the initial conditions
to systems with periodic random parameters and such systems Recently. the stochastic finite element method has been used
are modeled by a stiff ring supported by transverse springs with by Nakagir et al (1985) to determine the uncertain eigensalue
randomly distributed stiffness and mass parameters. Huang of fiber reinforced plastic (FRB) laminated plates These com
adopted an exponential form for the auto- and cross-correlation l posite materials usually exhibit anisotropv and heterogencit
function of the random structural parameters. This form was The elastic constants may fluctuate around the mean values due
onginally assumed by Hoshiva and Shah (1971). The analysis of to some slackness during the manufactunng process which
Huang was based on a spectral analysis method. He found that causes spatial distribution of the volume fraction In addition.
the mean of the natural frequency of the structure with random another parameter known as the stacking sequence is usualls
parameters is identical to the natural frequency of the structure used as a major design parameter of the FRB laninated plates

2.0
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F
F 0.0( X I ( a 3 / ,1 -- ) 1 . F r

- - 0.
cr
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0
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Fundamental natural frequency (a103
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FIG 5 Probability density function vanation with applied load (Hart. 1973)
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The s,-aking sequence (Vinson and Chou. 1975( Implies a group irregularities in shro-adm blades of jet engine rotors, can result
of parameters such as elasuc constants. layer number, fiber in a sabilizing machamam which is closel connected with the
orientation, and layer thickness. Nakagi et ai considered the phenomenon of mode localization. In the framework of local-
effect of the fluctuation of the overall suiffness due to uncertain ization theory, the stabing mechanism is explained based on
variatio of the stacking sequence. The uncertain staking se- the fact that ie ogal monsochromatic flutter wave is scattered
quence was treaed as a set of random variables for the case of into waves of different ad more stable wavelengths and inter-
simply-supported graphite/epoxy plates. It was found that the blades phase angles. While the effect of mistuning between
eigenvalue is more sensitive to the standard deviation of the turbomachinery blades is favorable in flutter I see also Kaza and
fiber orientation, and the effect of the stacking sequence is more Kaelb. 1982) it can lead to an increase in amplitude on at least
pronounced for the rectangular plate than for the square one one blade in forced vibration situation au sill he shown in
3.3.J. Namd ma , icaUui section 4.1.2.

Periodic structures with shlt vartations in their p odirv For periodic multapan beams, Mil (1956) showed thai the
can exhibit a phenomenon known as normalj mode localization. natural frequencies an clustered in an infnite number of groups.
This phenomenon takes place in a manner that vibrational or bands, with a frequencies in each band. where n is the
energy injected into the structure by an external source cannot number of spans If a osonal sprig is placed at the n I
propagate to arbitral large distances, but is instead substan- intermediate suppor location, then the width of the frequencs
uall. confined to a region close to the source. Hodges (19821 bands diminishes as the spring constant I increases In the
called this phenomenon as "Anderson localization" due to hmlit as the spring costant goes to infinitN. the beam becomes
Anderson (1958) who discovered mode localization in solid clamped at the constraint locations and the width of the
state physics in an attempt to understand electrical conduction frequency bands is reduced to zero. Pierre et al I 1996 estab-
processes in disordered solids. The effect of Irregularities has A lished an internal coupling parameter which is equl jalent I,, the
similar effect to damping in that it limits the propagation of inverse of the torsional spring constant 1. A, For ,, - I) the
vibrauons at large distances from the excitation source. This spans are fully coupled For large values of the spring constant
effect is mainly caused by confinement of the energy close to and irregular spacing betwen supports. a multispan beam can
the source, not by dissipation of the energy as it propagates out be regarded as a disordered chain of weakly coupled suh,-

The phenomenon of mode localizaion can be well under- tems. Pierre (i 915) and Pierre and Dowell (1 986) developed a
stood by using the coupled pendula example (Fig. lbl which theoretical analysis for the mode localization phenomenon and
was adopted by Hodges (1982). Hodges provided an excellent indicated that the free modes of vibration are susceptible to
explanation of mode localization: If all petidula are identical so becoming localized and the natural frequencies of the multispan
that their individual natural frequencies are precisely equal, beam are in bands of small width if the spnng constant is large
then the normal modes of oscillation when these pendula are They proposed a general criterion stating that localization mas
coupled together extend throughout the system, the amplitude occur if the width of the frequency band of the ordered sstem
of oscillation of each pendulum vanes sinusoidally with its is of the order of. or smaller than. the spread in indisvidual
position in space. On the other hand. if the natural frequency of natural frequencies of the disordered component systems
oscillation vanes from pendulum to pendulum in some kind of Pierre et al (1986) determined the free modes of transverse
random fashion,'then in the limit of zero coupling, normal vibration of a disordered iwo-span beam by using a Rayleigh
modes consist of oscillation of individual pendula at frequen- Ritz formulation with the constraint conditions enforced h%
cies equal to their natural frequencies. For small coupling the means of Lagrange multipliers. They developed a modified
normal modes remain localized close to individual pendula and perturbation method to analyze the localized modes Figure
the normal mode frequencies approximate the natural frequen- shows the mode shapes for tuned and mistuned beam for
cies of the pendula. Thus for a particular mode one pendulum is torsional spring parameter c - 1000. where -21A,,El. / :,
oscillating close to its natural frequency with a large motion. Its the length of the beam and E and I are the Young's modulu,
nearest neighbors, unlike the ordered system, are driven off and area moment of inertia of the beam. respectivelh For a
resonance, and since the coupling is weak they respond with mistuned beam it is seen that mode localization is manifested in
much smaller amplitudes. These neighbors in turn drive pendula that the peak deflection is much larger in one span than in the
further out and so on. but at each step the driving force and other one
response tend to dimish in magnIud. A typical mode shape
diagram is shown in Figure 6. In terms of forced oscillations.
mode localization implies localization of the response in the 4. RANDOM RESPONSE
vicimty of the excitation point. The response of linear structural components with uncertain

The effect of mode localization was examined by Bendiksen parameters can be determined by using standard techniques(parameter and Vaer andrmne bydise u1"5) stadar tehedquhad1984a bl and Valero and flenthksen (1985) who showed that such as the impulse and frequency response functions and
perturbation methods, or numerical approaches such as stochas-
tic finite methods and Monte Carlo simulation The results
reported in the iterature will be reviewed in the next two
subsection.

4.1.ala tedoim

v(1) v(2) 4. 1. 1. $h1# soul a mpinnaf
In an attempt to examme certain aspects of the dynamncal

response of stausscaly defined systems. Chenes and Bogdanofr
(1958) and Bogdmaniff and Chenea (191) considered a linear
sinale degree-of-freedom system with independent discrete dis-

FIG 6. Schematic diagram of the site amptihtude w(o) for a WoA- tributions in the ma, dainng. and stiffness coefficients The
tzed normal mode (Hodges, 192) analysis of Bo o mod Chirn was based on a partial
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differential equation for the response joint density ftunction standard deviation of the responrse amplitude are nonsiationar%
(Kozin. 1961). This equation is known as the Liouvlle equation and the standlard dieviation is 90 degrees out of phase from the
(Soon&. 1973) and is identical to the Fokker- Planck equation mean. The amplitude of the response standard deviation in-
with zero diffuision coefficient. Small dispersions in the system creases with time, and gradually dampens out after it reaclhes a
parameters were found to result in a considerable dispersion in certain level. For systems with a very hugh natural frequencs.
the frequency response- The impulse response of the same the uncertainty in the nature' frequencv was found to have vers
system was determined by using the perturbation method by small effect on the response 'tatistics However, the effect is
Chen and Soroka (1973). They considered a linear system signilicant if the natural frequency is low As the damping
described by the differential equation factor decireaem, the dispersion from the mean became substan-

+ 2 -. + X- r),ti3 ) 'l
(3) The response of multi-degree-of-freedoni systems with ran-

where the natural frequency is considered randomtw ia -. dam parameters wait examined by Soonig and "odanoff 1 9631.
c iZ, Z is a constant and the perturbation iQ. ts a random 1964) and Chen and Soroka (1974). Soiong, and "odanoff

variable with zero mean. e is a small perturbational parameter detertmned the statistics of the impulse admittance and
and f(i) is an impulse excitationi. Chen and Soroka, derived the frequency response of a linear chain with random masses di~s-
solution of equation (33) by using a perturbational technique. tribtited insa small range. Chen and Soroka developed a method
Figure 8 shows a sample of the time history response curves for which relates the statistics of. rsose parameters to the statis-
damping ratio O 0. It is seen that both the mean and tics of the tystem emgenvalues and eigenvectors Thev showed
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that the response statistics of disordered systems are higher opposite to the direction of disk rotation so as to appear
than those of purely deterministic systems The :nstantaneous stattonar. to a hxed obseer) Aln nteresting and :mporTant
transient response statistics of an undamped linear multi- "tructural phenomenon resulting from mistunine , the sphrtunL

degree-of-freedom system, with random stiffness. subjected to of a bladed disk's diametral modes of cibration mdc, ha\ in
arbitrary but deteriniustic forcing functions was investigated 1.2. . n nodal diainetersi into "!tin" or 'dual" mode, The
by Prasthofer and Beadle 11975) For the case of an impulsive presence of dual mode, charactenstics in a bladed disk an

excitation, they found that the growth of the response uncer- igniticantls affect either or both of its aeroelastis. -tabilit ani

tainty is exponential. As the standard deviation of the stiffness resonant response characteristics Whitehead l1fi 6 hocd

increases the response mean square increases rapidly with time that there is an upper limit to the effect of mstunina ani -

For a multi-degree-of-freedom system the response decay rate given approximately by the factor of I - % 1 2. where \ \ tht
decreases as the correlation coefficient between the stiffness number of blades in the row This upper limit Aas ohiatnesd
elements increases. The influence of damping uncertainty on the under the assumption that the damping forces are substantial]\
frequency response of a linear multi-degree-of-freedom system less than the aerodsnamtc coupling forces Jas and Rurn,
was examined by Caravam and Thomson 11973) They de- 1984) conducted a cenes of rotating and unrotatin test to
termined the mean and standard deviation of the response b identif'\ mistuning. damping. split factors for kariou, diametrai
using a linearization technique and a Monte Carlo simulation patterns and dynamic strains signatures from resonant test, .,I
They pointed out that an accurate estimate of the damping a shrouded fan blade disk System mode responses to arou,

coefficients for lightly damped systems, in the neighborhood of distortion patterns were found to involve ,tandinw, sate, and

a natural frequency, is very important in determining the mean traveling waves
and standard deviation of the system response. A number of lumped mass models of bladed disk ascmhlje,

The means and variances of the frequency response func- have also been used to study the effects of sanous hlade

tions of a disordered periodic beam were studied by Yang and mistune distributions on the maximum resonant response o the
Lin 1975). Two types of excitation were considered These were blades (Wagner. 1967. Dye and Henry. 1969. El-Basoums and
a concentrated force (or moment) and a distributed force con- Srinivasan. 1975: Macamn and Whale%. 1984) The nature ,f
vected at a constant velocity. It was shown that the magnitude the lumped parameter models used in these studies is such that
of the statistical average of the frequency response functo can individual blade response was studied in terms of single- or
be considerably greater than the value computed without taking two-degree-of-freedom blade modes whose vibrators response
into account the random variation in the span lengths In the was altered by mechanical coupling s-ia the disk portion of the
neighborhood of resonance frequencies the standard deviation models Hence. the basis or starting point for these lumped
of the frequency response function becomes quite large. indi- mass models was the individual blade resonant frequencies The
cating greater uncertainty in such regions. In the case of con- results showed how much greater or smaller the individual
vected loading the use of a perfect periodic model cannot blade response would be for a set of mistuned blades compared

account for the response in certain vibration modes while these to the response of a tuned set of blades For a given mistuning
modes can be induces in a disordered periodic beam- distribution and exctatica. the response of the mistuned set of

41..Z Mbbod dbbd blades was found to be many times greater or smaller ide-
It has been indicated in section 3.3.3 that the mistuning of pending upon the disk circumferential location) than the re-

turbomadhnery bladed disks could have beneficial effect in the sponse of tuned blades Ewins and Han (1984) conducted a
case of blde flutter. However,. the effect is reversed in the case serets of case studies to examine the influence of various param-
of forced vibration (Whitehead, 1966: Ewins. 1969: Sange and eters on the resonant response levels of individual blades on a
Mac:Bain. 1931). It is believed that Tobias and Arnold (1957) disk. They found, for the case of a 33-bladed disk, that mistun-
have made the first attempt to understand the effect of blade ing always increases the highest resonant response level from

mistmunng on the response of stationary waves (modes traveling that experienced by a tuned system but while some blades are
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more highly stressed, others suffered a lower level and the mean Gngonu caietnd that it can be applied to determine the re-
value is roughly constant. It was also concluded that the highest sponse stausucs to external dyna ic excitauons even alhen the

response is always experienced by a blade of extreme mistune statistical information about spatial \anation of matenal prop-

Analytical investigauons of mistuning fall into three cate- erties is limited. Recently Lu et al 1
9

15ab. 14146o developed a

gories (Griffin and Hoosac, 1984): deterministic (Dye and number of probabilistic finite elements stethods for nonlinear

Henery. 1969: Ewins. 1973; EI-Bavoumy and Srtnvasan. 1975). structural dynamics These methods are applicable for corre

statistical lHuang. 1982), and combined and statistical ap- lated and uncorrelated discrete random anables For eiasti,

proaches (Sogliero and Sitnivasan. 1980: Kazan and Kielb. plastic bar with end load, thes iLiu et al, 191Sbi computed the

1982: Muszynska et aL 1981). Basu and Griffin (19861 used a mean and vaiance of the displacement at the free end hs umink

deterministic/statistical approach and developed a model in- the probabilistic fiute element and Monte Carlo simulation

volvng aerodynamic and structural interaction for studying the The solutions of the two methods compared %er" well. ho, ser

effect of mistuning on bladed disk vibration. They found that the probabilistic finite element approach required much less

the mistuning effect significantly decreases as the density of the computer time than the Monte Carlo simulation Unfortunateh
gas flowing through the turbine is decreased. On the other hand these results did not reflect the influence of parameter uncer

the effect was found to increase linearly with the number of laintes on the random response
blades on the disk. The dynamic response of random parametered structure,

under random excitation has been examined in a number of
studies by Paem and his group (Chang. 1495. Bennett. lq,5

4.2. Stekaile finite elemet methio Branstetter and Paez. 1986 These studies provide computer

Recent developments of stochastic finite element methods programs in a finite element framework to establish response

have promoted the analysis of structural dynamics with uncer- moments on a step-bv-step basis These numencal igonthm,

tam parameters. These techniques could be broadly classified evaluate the system response characteristics at an advancc time

into statistical and nonstatusucal tLiu et al, 1995b) The statsti- by using the statistical information about response structural

Lal approach is based on numerical simulation via Monte Carlo. characteristics, and excitation at a previous time Bransteiter

stratified sampling, and Latin Hypercube sampling. A compara- and Paez (196) examined their computer programs for seerai

ttve discussion of these techniques is provided by damped single degree-of-freedom systems and several in-

Mckay et al (1979). All simulation methods require that the damped two degree-of-freedom systems The responses of thesc

joint probability distributions of the excitation and random systems to white noise excitatlons were obtained for random

parameters be available. However, these disinbutions are scl- stiffness parameters while all other system parameters %ere

dora to be available. Instead, one usually may assume that the fixed It was shown that single-degree-of-freedom stem, dt,-

input random variables are mutually independent and Gaus- play greater response variance than systems aith determnii

sian. If these random inputs are non-Gaussian distributed. one stiffness The difference in response variance is found to he

may use the Rosenblatt (1952) transformation to transform small when the structure initial conditions are zero The di-

non-Gaussian correlated variables to Gaussian uncorrelated ference increases and assumes an oscillators character %hen the

ones. Nonstatistica approaches include numerical integration initial conditions depart from zero The mean response is non-

(Liu et al. 1985a. 1986). second moment analysis Cornell 1972) zero for structures with nonzero initial conditions and or non-

and stochasutc finite element methods (Nakagir et al, 19W4: Liu zero mean load

et al. 1985a.b: Hisada and Nakagir. 1982: Hisada et al. 19831 Bennett (1985) considered uncertainties in the .tiffnes and

A major advantage of these methods is that the multivariate damping of single- and multi-degree-of- freedom structural ,%,-

distribution functions are not required but onl the first two terns The random variables of the system parameters aere

moments. Recently several stochastic finite element approaches replaced by a deterministic component iequal to the mean of

have been developed by Vanmarcke and Grigonu (19831, Liu the original random vanable and a random component a tth

et al (1985a.b). Dias and Nagtegal (1985). and Mon and zero mean and with variance equal to that of the onginal

Ukat (1986). Linear problems in structural mechanics with random variable For a single-degree-of-freedom system

uncertain parameters have been solved by second-moment Bennett found that the value of the peak response increases

analysis (Contreras 1980: Nakagri et al, 1984). monotonically with the standard deviation of the tiffness For

Astill et al (1972) examined the problem of impact loading lightly damped systems which do not have zero mean. the

of structures with random geometric and material properties effects of the damping randomness on the response are less

Their approach is a combination of finite element method and a pronounced than those obtained when the stiffness was random

Monte Carlo simulation. For the case of an axisymmetrtc The standard deviation of the response at the time of peak

concrete cylinder they assumed spatial distributions of YoungIs response was round to increase with the correlation between the

modulus and density- for each realization of the test cylinder stiffness and damping.

Each test cylinder was subjected to the same axial impact
loading. The algorithm gave a sample of 100 maximum stress
intensities from which the sample mean and standard deviation S. DESIGN OPTIMIZATION AND RELIABILIT

were computed. For a certain intermediate location of the test
cylinder it was found that the axial stress is always different .1. Relbity-bamed des"
from the corresponding stress in a uniform cylinder.

Vanmarcke and Grigonu (1983) developed a stochastic finite The study of response of disordered systems is very in-

element analysis for slving first- and second-order statistics of portant for design purposes These responses can help the
the deflection of structural members whose properties vary designer to establish acceptable tolerances on system compo-
randomly along their axis. The covariance matrx of these nents The main problem which concerns the designer is how to
element averages was obtained by simple algebraic operations govern the fluctuations of the system parameters for safe oper-
on the variance fumction which in turn depends primarily on the ations. For example when the valtses of the elastic displacement
scale fluctuation. Although this approach was used to determine of a structure are significant, the problem is to set up an
the free end deflection of elastic members. Vanmarcke and optimum standard of manufacturing the structure components
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Here the permissible fluctuation in the structure parameters Y Svmbolicall%. these states are
becomes a restictive condition. Generally. design opurimzation P, - Prob{ Q C -,FI. and P,_ - Probi Q c Y ] 41)
of structures subject to reliability requirements is regarded as
the ultimate goal of any design procedure. The basic approach Among the basic formulations of reliability :ulculai on, are
in most reliability-based structural optimization is to impose a the level I and level 2 approaches In level I one simpl' apphies
set of constraints on overall system reliability or probability of the characteristic safety factor y - R S In lesel 2 one need, to
failure (Ang and Tang. 1975. 1984: Moses. 1973: Parm and determine a reliability index 0 which measures. in units ,1
Cohn. 1978). Another approach suggests to minimize the total standard deviation, the distance between the aoerage point and
cost or weight for a specified allowable overall failure probabil- the boundary of failure region. This means that larger salues ,I

ltv ( Frangopol. 1984a: Hilton. 1960: Moses and Kinser. 1967) /3 imply smaller probabihv of failure The prohabibits of failure
One of the main objectives of the designer is to establish an is found (August ct al. 1984) to be less dependent on the

acceptable probability of failure. Several procedures for the coefficient fo variation 8, - *(S EI., of external ectati,,n i
analysis of probabtlity of failure of structures have been devel- the corresponding coefficLient of resistance 6, = iti R P Il R

oped (Frangopol. 1914a.b. 1985ab: Frangopol and Nakib. relatively large. where 8(S) and 8( Ri are the tandard Jen.'
1986: Kam. 1986: Moses, 1974: Moses and Kinser. 1967 Moses tions of the applied stress and the resisting stress. resp¢it1orl
and Stevenson. 19701 In order to establish a probabilit, of Level 2 reliability methods include the estimation of the
failure consider a structural system subjeted to a number of mimmum distance 0 which is regarded as a safei% neasur. ,t

external loads. The structure is said to survive if the applied the smallest distance of the surface separating tue afe and
'tress 0, in the built-in section due to al external loads Is, unsafe regions from the ongin in the space of random \at;
'mailer than an ultimate limit stress a, ables Q

q, a1 341 (jenerally the level of performance of an% 'tructural -i'cn
depends on the properties of the s\stem Thus. I i pshit i.

The equality sign in eq (39) corresponds to the state of the characterize a function ii Qi) known as the perlormance IUn,

collapse threshold of the structure In general, for each limit tion such that
state. it is possible to establish a critical inequality similar to eq Q I -) - the safe tatc. and
(39) and identify. in the space of the relevant parameters. a 4:'
.. safe region Y' (or success region", where the critical in- g( Q) 1) - the failure .tate

equality holds, and unsafe region Jr (or failure region). where it Geomeincalh the limitstate equation 4(Q 1 - i, an ,i-d:icn
does not hold These regions are shown in Figure 4(a) according stonal surface that is referred to as the "failure .urlaj.c - Th,
to Augusti c al (1984). where performance function could be linear or nonlinear The caiua.

S - an and R -i (40) tion of the exact probabilit of safet for nonlinar perf'rnianc
function is generally involved and the determination if the

In most cases the applied load S - S1( I is a random process. required relabilit', index would not he as simple as in the ilnear
%hile the resistance R, which is calculated or measured. is a performance function Ang and Tang. 1994t For cornJl'd
random variable. For each actual structure, the resistance takes non-Gaussian random sanables. the safety index mas he
up a constant value R,. although uncertain, and the representa- evaluated in terms of another .et of independent (faussian
tuse point ) R. S) moves in time up and down the solid line in anables through the Rosenblatt transformation 11952)
Figure 9(a). Figure 91b) shows a possible realization of the Hohenbichler and Rackwtiz 19811 developed an alaorithm to
random loading process S' t). The limt state is attained when determine the safets index bs using the Rosenblatt transforma
5)1) violates the threshold R,, The time to failure i.., ,an he tion
used as a measure of the structure reliability Alternatisels. inc Tanaka and Oishi 090) developed a method of regulat:nz
can consider a time interval (0. t) and then check the critical the deviations of random parameters and denied a rctrit~t,
inequality in the worst possible condition. This can be for- conditional formula in terms of the permissible displa cenini
mulated in probabilistic terms by stating that the probabihlts of (or natural frequencs fluctuation The method is based on rhi
failure Pr1,, and the complementary probability of success (reh- linear deviation analysis with partial differential anahsis to-
ability) r - P, coincide respectively with the probabilit thai gether with sequential linear programiung iSLP) for a numhei
the critical inequality is violated at least once in the interal of restrictive conditions Tanaka ci ali 1982) treated the opim-
10. i) In space random variables, the probability that a point zation problem of the allowable variance of random parameters
Q. which represents the sigificant input and system parame- by using a perturbation method and Monte Carlo simulation
ters. falls either in the failure region X or in the success region They computed the deviation of the steady state response of

S-Sax

Ro-const. failure

S (a) (b)

FIG 9 (a) Safe and unsafe regions for bi realization of S4i Augusti et al. 191Wa



Appi Mach Rev vol 40, no 3, Mar 1987 ibralrim Structural oynamcs *tin parameter uncertainties 323

structural systems involving random parameters %jtb the pur- possible in real problenis because thes cannot be identitied
pose of regulaung the deviation of the random parameters wshen exactly. It is a common pracuce in senitiit. theor% to define a
the deviation of the response is specified. sensittvt'fun/uctiont S which relates the elements of the set of the

The techniques of mathematical programming have been parameter deviauons -An to the elements of the set of the
extensively used to minimum-weight design of deterministic parameter-induces errors of the system function I x bs the
structures subject to constraints on stresses. displacements. dy- hnear relationship
namic response, and stiffness (Moses and Kinser. 19671: Moses .1 S( Ac ( . *-
and Stevenson. 1970: Moses 1973. 1974). The stochastic pro-
gramming of dynamcally loaded structures was developed This relation is a linear approximation of eq. (431 and is 'aid
originally by Charnes and Cooper 11959) and is well docu- only for small parameter variation, ke. ,1.ai " a.i S is a
mented by Rao (19791. The basic idea of this method is to matrix function known as the trajector% sensitistts matrix hich
convert the probabilistic problem into an equivalent determinis- can be established either by a Taylor series expansion or b\
tic one by minimizing the expected value of the objective partial differenuation of the state equation with respect to the
function subject to certain constraints. Davidson et al j19771 system nominal parameters
applied the mathematical programming techniques for optim- When the system is random, the function S is referred to a,
zation of structures subject to reliability requrements. Their stochastic sensitivity funcuon Szopa i 19K4) deseloped equa-
work resulted in a general formulation of the mnimum-weight tions for stochastic sensitivit functions to determine the in-
optimization for indeterminate structures with random parame- fluence of changes in the initial conditions on the response
ters. Jozwiak 11985. 1986) applied the stochastic programming These functions were aplied to a stochastic nonlinear oscillator
based on expected values in the problem of optimization of with a limit cycle. It was found that the mean salues and he
dynamically loaded structures with random parameters The variances of the stochastic sensitivits functions converge to
mean values of joint displacements and their derivatives were zero. Szopa (1986 used the sensitivity theory to investitate the
determined by solving the equations of motion of the -structure influence of changes in system parameters on solutions of
under the constraints of minimum weight dynamical systems. The stausucs of the stochastic sensitrit,

Other techniques such as multi-objective optimization meth- functions were found to have finte values when the response
ods i Rao, 1982. 1984; and Schy and Giesv. 19811 and fuzzy sets exhibit chaotic characteristics.
(Zadeh 1965, 1973: Brown, 1980: Brown et al. 19831 have been 5.2.2 Desig ari nies
employed to the design of simple structural elements and Consider the cigenvalue problem given by eq. 4 15t. It sill be
aeroplane control systems involving uncertain parameters and assumed that the eigenvalues X, of the system mainx A are
stochastic processes. The basic idea in multi-objective design is distinct. The elements of A are function of the system parame-
to include all important objectives in a vector objective func- ters a. The sensitivity of the free vibration the structure ais
tlion. The problem of optimizing structural systems involving well as the sensitivity of its relative stability vth respect to an.
dynamic restrictions, random parameters, stochastic processes, parameter of A can be characterized bv the sensitivit\ of the
and multi-objectives has been outlined bv Rao t1982. By eigenvalues X with respect to the parameters.
considering the imprecision of the restricitons such as use. The partial derivative
design. construction, one may assume that. some of the con-
straints and goals for each of the objective functions are fuzzy S = ax I'd.
or imprecise in multi-objective fuzzy optimization design. If the is known as the eigenvalue sensitivitv or the eigenvalue den% a-
corresponding expectation functions for objective and admis- live.
sion for constraint are introduced it is possible to quanufv the The eigenvector sensitivity !or derivative) of the sterri
fuzzy objectives and constraints. Guangwu and Suining 41986) matrix is also given by the partial differentiation
employed the concept of multi-objective fuzzy design optimiza-
lion for ship grillage structures. S - dx,' do 1.. (46)

The eigenvalue sensitivity has been examined mathemati-
5.2. Design sensitivity to piameter varaions cally by McCalley 1960). Mantey 1968. and Redds (1969

Frank 41978) developed a number of formulae to determine the
52.L Buti concept of.wiftkti , sanksig eigenvalue sensitivity The denvatives of the eigenvalues and

The sensitivity of a structural system to variations of its eigenvectors are very helpful in design optimization of struc-
parameters is one of the basic aspects in the design of struc- tures under dynarmc response resictions They have been
tures. The sensitivity theory is a mathematical problem which extensively used in studying vibratory systems with vymmetnc
investigates the change in the system behavior due to parameter mass damping, and stiffness properties (Fox and Kapoor, 196S.
variations. The basic concepts of sensitivity theory are well Kiefling. 1970) and in nonself-adjoint systems (Rogers. 197():
documented in several books, see. eg, Frank (1978). The sensi- Plaut and Husevin. 1973: Rudisill. 1974) For distributed
tivity problem can be stated by defining the actual system parameter systems, design derivatives of eigenvalues were first
parameters represented by the vector & - r. a, . a, }T encountered in optimization studies by Haug and Rousselet
which differ from the nominal value at. by a deviation .0a. (19801 and Reiss (1986). Reiss used a relauvelv simple method
These parameters are related to a certain vectorx which char- to determne explicit results for the design derivatives of eigen-
acterizes the dviamic behavior of the system In structural values and eigenvectors. He expressed self-adjoint operator
dynamics the vector x can be taken as the system response equa.tins in terms of integral form by using Green's function
vector. The mathematical model of the system response can be (Ress. 1983). Recetly Kuo and Wada (1986) developed the
written in terms of the first order differential equations nonlinear setstivity coefficients and correction terms. usualls

{k} - {f(xar.t,F)}. {x( t,,)} - (x' ). (43) eiminated during the linearization process in the Taylor expan-
sion. The nonlinear correction terms were found significant in

where F represents the input vector, problems involving many finite element analyses where the size
Generally a unique relationship between the parameter vec- of the eigenmatrix is of order IOE06 and the difference in the

tor and the response vector is assumed. However. this is not eigenvectors may be of order 0 01
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Lund (1979) developed a method to calculate the sensitiviti .,Hi z
of critical speeds of a conservative rotor to changes in the 4. -
design using a state vector-transfer matrix formulation Fntzen
and Nordman (1983) have developed the eigenvalue and eigen- A Theoretical
vector derivatives for general vibratory system (with nonsvm- 4 .0
metnc system matrices) and used them in evaluating stability 0
behavior due to parameter changes in rotor dynamics. Palazzolo Second mode
et al (1983) presented a generalized receptance approach for 3.6
eigensolution reanalysis of rotor dynamic systems. Their method
has the advantage of accomodatng system modificaion of arbi-
trary magnitude and treats the modifications simultaneously 3.2

Rajan et al (1986) developed the eigenvalue denvatives for the
damped natural frequencies of whirl of general linear rotor '.8 First Wide
systems modeled by finite element discretization. For under-
damped modes, the eigenvalue derivative is complex. The real
part represents the damping sensitivity coefficient while the 2. - I I I
imaginary part gives the whirl speed sensitivity Rajan et a 0.0 0.02 0.04 0.J
showed that the combination of design parameter and whirl
frequency sensitivity coefficients may be used to evaluate the FIG, 1ii Comparnson of cxpenmentai and iheoretuI natura1 :re

damped critical speed sensitivity coefficients quencies ,of the tiri i-o modes for , i Pierre et a I. "Si,

In reliability-based design optimization it is useful to ex-
amine the results to sensitivity analysis in order to determine

statistical p ordered case were found in some cases quite large (91) i 1iitthe influence of the sttsmlparameters on the optimum ns248sadr eito ntems oiin
solutions. The essential objectives of sensitivity analysis of anv only 2.45 standard devation in the mass positions
system is to establish a measure of the way each response Pierre et al 09961 conducted an experimental investiition
quantity vanes with changes in the parameters that define the to venfi the existence of localized modes for two disordered
system (Gnerson. 1983). Recently. Arora and Haug (1971 and two-span beams shown in Figure 7' The beam %as pinned it
Frangopol 11

98
5ai have developed a technique for determining both ends while the third support with kanable torsional filt-

the reliability-based optimum design sensitivity of redundant ness was located near the mid-span This middle support can hc

ductile structures. Frangopol investigated the sensitivity of an moved to various locations. A pure excitation torque was ap-

optimum design to changes in the statistical parameters that plied to the specimen beam near its intermediate support
define the loading and resistance strength of the structure Figure 10 shows the comparison between theoretical and expen-

mental natural frequencies of the first two modes versus mistun-
Ing parameter 81 - A/, 1. where / is the length of the beam. and
-I/ is the variation from the middle of the beam. The coupling

6. EXPERIMENTAL RESULTS parameter c - 2A .l El. where k. is the stiffness of the tor-
sional spring. E and / are the Young's modulus and the area

The first attempt to measure the statistics of structural moment of inertia of the beam. respectively. The degree otf
modal frequencies is believed to he made by Mok and Murray localization of a mode is expressed by the ratio 4 = 4 4
(1965. They carried out a series of free flexural vibration tests which represents the peak deflection in one span to the peak
of a bar with a stepped profile and a maximum %anation in the deflection in the other span, such that the numerator of thi,
cross section of 50%, The predicted and measured results Asere ratio corresponds to the span with smaller peak deflection Thi,
found very close. Twenty years later. Paez et al 11985. 19961 peak ratio is shown in Figure 11 for the two modes for tvo
conducted a series of experimental investigations to measure the different values of torsional spring constant , The mode shapc,
random variation of the natural frequencv of a cantilever beam of tuned and mistuned beams are shown in Figure 12 Ii is

One end of the beam was mounted on a fixture through a screv reported that for 81/- 2 and ,= "8I.S. the first mode of the
and two washers. and the other end carries a concentrated mistuned beam is strongly localized in the second span. %% herca,
mass. The torque in the screw establishes a preload which the one of the tuned beam is collective, that is the peak
governs the stiffness of the beam at the fixture Paez et al deflection is the same in both spans.
conducted 19 expenments each with different values of base A comprehensive experimental and theoretical investiation,
torque and stiffness. The variation of the fundamental frequenc were conducted by Ewins ( 1976f to determine the effects, if
with the base stiffness was obtained experimental, and numeri- turbomachmnery blades mistumng. His bladed disk tesipieve
cally Iby using a finite element program, It was shown that the model consists of 24 blades A provision for adjusting the tune
standard deviation of modal frequency increases with the mean of each blade individually was accomplished b. adding a num-
modal frequency Another interesting feature observed by PaeZ ber of washers to a nut and bolt attached near the tip of each
et al was that the magnitude of random variation in modal blade The test piece was excited by placing an electromagnet
frequency can become greater than the spacing between modal close to its surface and passing an alternating current through
frequencies as the frequency order increases, the magnet. The response of the bladed disk was detected b\ a

The phenomenon of normal mode localization was first set of strain gages fixed near the root of each blade. The natural
examined experimentally by Hodges and Woodhouse 119831. frequencies were then measured by adjusting the frequenc of
Their model was a thin high-tensile steel wire stretched between the magnet so as to produce a large response in the strain gage
two supports. Seven small lead weights were securely attached outputs The shape of each mode was determined bs examina-
tintially at equal lengths and then were shifted slightly to give a tion of the relative amplitudes of all the blades It %as observed
controlled amount of irregularity Under a step function force that there was a distinct, though complex, pattern linking the
with repeatable amplitude the string motion was observed and basic (tuned) mode shape with the mistimed mode shape and
measurements were taken for the energy transmission from end the mistuned pattern, particularly for the lower diametral modes
to end of the string. Levels of energy attenuation in the dis- Jay and Burns (1986) conducted a series of rotating and non-
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A I I Irotating tests to identify individual blade frequencies. mode

1.0 shapes. mistuning danmping. and split factors for diametral
',,a Theoretical patterns of the 3. 4. 5. and 6 diametral mode families The tirsi

o0 Experimental harmonic of the normalized axial velocity deficit at the prosper

0.5 Scn moemass flow rate was used to construct a gust perturbation selos-

its'. These spanwise gust perturbation velocities multiplied h%
th product of the density and the relative velocit\ sq~uared
results in the normalized force parameter. It was found that an%

0.0 increase in the perturbation force parameter results in An :n-
crease in the dynamc stress in the bladed disk. In additioin ihe

First modeperturbation parameter does account for the interaction h,:-

-0.5 tween the wake and modal response of the system as the% are
changed by aerodynamic loading.

-1.0
__________________________ 7. CONCLUSIONS

A Theoretical Several problems in structural dynamics involsina paratneici
10 ()DExperimental uncertainties have been treated in the literature These problem,

include the random eigenvalue of disordered s~im.normal
mode localization, random response. design optimization. And

0.5 reliability. The mathematical theorv of the random eicns aliuc
Second mode has reachied the maturity stage, however ibis theor% has nit

been fully implemented to treat real engineering problems It
0.0 observed that some progress has been made towards the desel-

opment of numerical algorithms such as stochastic mnite olc
ment methods and Monte Carlo simulations io determine the

First mode response of structural elements. These developments hase pr'-
-0.5 moted the investigation of several problems, includingz misiunedl

turnomacbanerv bladed disks. reliabilit-based desien and Je-

ivatives of cigenvalues in design optimization Few attempt,
-1.0 bave been made to employ ness approaches such as, multi-

0.0 0.02 0.04 0. 06 bjective optimization and fuzzy sets, in design opii at:ii
problems. It is believed that these teLbtniques awill has e ness

FIG 11 Comparison sf experimental and theosretical peak ratso research avenues in many design problems A5nother area 'I

of the first two modes for ial 'X)14. (hi =2S1 x Pierre ei ai. T'li potential future research is the optimum design nesisisT
reliabilits'.based design under Multilevel reliahilits 'nstrainik
io evaluate the significance of sanoius uncertaintic, And .p.
prOXomations on the optimumn solutions

The problems treated :n the literature hase heen recor:. tea
within the framework of the tinear theists The hiniiai~jsn~ 1
ihe linear fosrmulatiosn need to he defined to proside the iMii.

tuned iural dynamicisi the influence of nisnlinearttie. A' A "'U'urC
uncertainty Future studies should include ibe niluenc,
iteomeitri and mateial nssnlineaniics Eiperimental nseiica.
Tions Aalso' sers mportant is examine Ic .nifuen-.e 11
parameter uneintcI of Lsosit u. turcs .,n Tir d,.
'tai perfortnan-s

(a) J 3
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EXPERIMENTAL INVESTIGATION OF S7ICTIZURA AUTOPARAKETRIC

INTEACTION UNDER RANDOM EXCITATION

I. A. Ibrahi* D, G. Sullivan*
Texas Tech University

Lubbock. TexAS 79409

degree-of-fredom systes. Parametric instabilitv
&IIL'h takes place when the external excitation appears as

a coefficient in the homogeneous part of the aqua.
The paper presents che results of an experimental tIon of motion. It occurs when the excitation
investigation of random excitation of a nonlinear frequency is twice (or multiple) of the system
two-degrae-of-frcadom structural model. The model natural frequency. Internal resonance and satura-
normal mode frequencies are adjusted to have the tion phenomenon may occur only in nonlinear systems
ratio of 2 to 1. This ratio meets the condition of with more than one dogree-of.freadom Internal
internal resonance of the analytical model. When resonance implies the existence of a linear rela-
the first normal mode is externally excited by a tionship between the system natural frequencies and
band limited random excitation, the syste mean causes nonlinear normal mode interaction in the
square response is found to be linearly proper- form of energy exchange. Under external harmonic
.ional to the excitation spectral density up to a excitation, the mod which is directly excited,
certain level above which the two normal modes exhibits in the beirming. the sam features of a
exhibit discontinuity governed mainly by the inter- single-degres-of freedom system response and all
nal datuning parameter and the system damping other modes remain dormant. As the excitation
ratio. The results are completely different when amplitude reaches a certain critical level, the
the second normal mode is externally excited. For other *odas become unstable and the originally
small levels of excitation spectral density the excited node reaches an upper bound. In this case.
response is dominated by the second normal mode. the mode is said to be saturated and energy is
For higher levels of excitation spectral density transferred into ocher modes. This interesting
the first normal mode attends and interacts with phenomenon takes place only in systems with quedrs.
the second normal mode in a form of energy tic nonlinear coupling which results in a third
exchange. A number of deviations from theoretical order internal resonance.
results are o%ser"d and discussed,

Under deterministic unsteady aerodynamic forces.
most nonlinear characteristics can be predicted by

I- INTRODUMflION one of the standard techniques of nonlinear diffe-
rential equations. However. aerospace structures

The last tvo decades hey witnessed an incressing are usually subjected to turbulent air flow, end
interest in the study of dynamic behavior of non- the aeroelastician is confronted with aerodynamic
linear systems under deterministic and random exci- loads which are random in nature. These loads vary
tcions. Under certain conditions these systems may in a highly irregular fashion and can be described
experience complex response characteristics such as in ters of statistical quantities such as means.
jump phenomenon, limit cycles, internal resonance, mean squares, autocorrelation functions snI s9ec-saturation phenomenon, and chaotic motion. These tral density fuactio,. I brahim and Roberts 0,11
nonli .er phenomena have been predcqed theoreti- and Ibrahim and Roo .' 3considered nonlinear two
cally - and observed experimentally- under harmo- d4gree-of-fredom structural systems and applied
nic excitations. However, most nf the predicted Gausian and non-Gaussian closure techniques to
random response characteristics, including response predict the response statistics and response sto-
stochastic stability and statistics,

7 ,  
have" not chastic stability. These studies revealed that a

been verified experimentally. Very few experimental system with internal rsenenscs may experience non-investigations of random vibration of nonineer linear characteristics such as autoverametric in-
systems have been reported in the literature.i The 14
lack of experimental verifications say be dus to teraction. Roberts conducted a series of expe-
several reasons. These include difficultiee in rimental teats to measuro the "an square stability
generating the se properties of the random exci- boundaries of a unlmodal response of a coupled two-
cation as represented theoretically, ad the 1 degree-of-froedom system. Roberts reported a mm-tatione of exrimenl equipment- oent~Lay, ber of difficulties in measuring the stability
golotin

9 
discussed a umber of experimental diffi- bosmoaries. ased on the authors experience and

Culties S~eomtered in experimental measurements of other investigators work. it is understood that
stochastic stability of parametric excited syst. experimental investigation of nonlinear randomvibration is not a simple task and requires careful
In deterministic nonlinear vibrations; the ampit- planning and adva.jcd equipment preparations.
ude Jm. liat cycles, and par--tri instability The purpose of the present paper is to report the

are caneno features of nonlinar sitgle, and mlti - results of an experimental tnvstigation to mea-

sure the response mean squares of a nonlinear two
a Profesmor, Dettarmnt of Mechanical Engineering degree-of-freedom structural model under band

Member AIMA. limited tadem excitation, Theoas goodul as m
st Graduate Student lytically examimed by mado, et & . dr harm

CSpW% 0 A=mem fm AOAe m -
, Imm ,s. W. As 9601 PurwL1



nit excitation, and by Ibrahim and He 
1
2.

1
3 uder

wide band random excitation. Agreements and disag

reoemente wich theoretical predictions vii be dis-

cussed together with recoendations for future

experimental work.

11 ANALTIC&L IACI(CGim

The random response of a tvo degree-of- freedo
elIastic struture has been determined anralytically

in references (12.13) The analytical model shown
in fig (1) consists of two beea with end m sses

Under vertical support motion (t) the response of

the two beams is mainly governed by linear dynamic

and parametric couplins. owever, if the system ., 1 o' . ps*d -

is deigned such that the first two normal o"de

frequencies . and , satisfy the internal reso-

natnce co ,tito . the nonlinear inertia

forces becom doinant and the sysem dynamic r..- Ely 2 . .ty

panse deviates from the linear response In terms E

of the non-dimensional normal coordinates Y the 0.04
system equations of motion are: 2.A -0.02

( 1] Y1 - Icily + i f2JY) - -. . - 0.025

).03

" (T)Ia) + c4(r)IbJlYI • ( ' (1) /

where 4 prim denotes differentiation with respect l.Y%

to the nondimnasional time parameter - - ,t, and the ; ,

coordinates a are related to the dimensioJal normal

coordinates by the relation lYIY.I - (y, 
'
y' iq 1  

1.0 , 0.02

. is Caken As the response root mean squre f th -

, ,te, when the length of the vertical beam shrinks. , ,

to zero. i.e. the response root mean square of the ,',

main beam with end es se The elments Of

the vector (aW and Otrixbi are constants depen / .

ding on the system pro rtieel The smll parameter 0.5 - 0.

q */ The matrix is diagonal with elements

an (I / )2. The vector (I I contains all quad-

rat ic nolihear terms which enco p sses TWO groups V
nonlinear terms of the same ods end autoparamtrIc

terms of the type Y Y' It is the autoparametric

coupling which gives aise to the internal resonance 
0 

0

condition r - 2 Pi - 2. 0. 0.5

The random acceleration "() was Assumed to be

Gaussian wide band process with zero mean and a . ) ubsian cloure solution [or

smooth spectral density 2D up t amt freqncy various vejues oL nonlin,-r

higher than any characteristic fr;'.= c, of the

system. The cceleration terms in the nonlinear -upi~g parae ter

functions *h were removed by successive *limina-

cton ad th
1

* system equations of motion was trm,

stormed into A Narkov vector via the coordinates This approach resulted in fourteen coupled differ*-

transformation ntial equations for first and second order moments

of the response coordinates. The rnmerical integ-

ration of these equations revealed that the respon-

(Y .yy.jY ) - IX .X .X (2) so mean squares fluctuate between two limits. This

2 1 2 1 fluctuation means that the response does not

achieve a stationary state. The autoparametric

A got of first order differential equations of the interaction took place in the netihborhood of

response statistical moments were generated by internal resonance and was manifested by an &nergy

using the Fokker-Planck equation approach.7 These exchange between the man squares of the two normal

equations were found to be coupled through higher odes. Fi- uro (2), taken from reference 12, #hows

order mo.nts and were closed via two approaches: a Sa ple of the mean square response of the system

Gaussial enad non-GauSisn closures. These closure normli modse against the internal detuning

techniques are based on the cumlant properties parameter.

The Gaussian closure is established by equating all

cumulants A of order greater then two to zero, 1 0. The second method takes into account the effect of

the response non-normlity As A first order non-

k k
2  

k, -. Aasion sroxLmetion all cusulamts of order

1> 2 " ] -I. k (3) greater than four were equated to Cero. i.*.
k Y .



2t I h existence of seursirion phenomenmorl The sari.-

C-001 Z ration phenomenon - ts a weil known feature for
2.0 0.04 inuiri-degree-of-freedom systems Inv~olving quadratic

- -0.02 nonlinear coupiing subjected to harmonic forced
excitation.

- -0.025
It is well known that the predicted results are

2 approximate and their validity has not been
1.5 EyI'f1 0.03 examined The next section reports the measured

/ results of a series of experimental tests of the
- -. same model under band limited random excitation

Et/ 2

0. 0.31 exp erimental elusdby anddw unat1.i "

sists of a horizontal beam of cross section ofI0 Ilil'x 0' length 7 5". and carries a tip mass of
0015 slug The tip mass has a provision for
ieamping the vertical beam which has cross section
054.sl 0" The iength of the vertical beam can

0 Ibe adjuat*d by changing the location of its top
3.45 0.5S 0.s5 mass (0 0127 slug). The deflections of the two

boem@ are "esoured by strain &gg fixed at the
root of each beam Two gages are mounted on tha
horizontal beam in a two arm bridge Four gages

big- (3) Non-4;,euesiali closure solution ,or are mounted on thle vertical be"m In a four arm
various values of nonlinear coupiioqj bridge The fixed end of the horizontal beam is

paramter tclamped by a fixture which Is bolted on the top of
the shaker armature The shaker is a Caldyna model
Ali$ of thrust 100 lb and provides I" peak-to-osk

Ik IX ' k0 I'lk stroke The shaker is powered by a Ling Electro-
H 0, (4) nics Model RA-250 pover supply and receives a ran-

1-. i dom signal through a Cenltad Type 1381 Random Noiss
generator. The random signal is filtered to aThis approach resulted in 69 first order differen- desired band width with a Itrohn-Hit* Model 3343

tial equations, in the first through the fourth Variabe Electric Filter. The filtered signal is
order momeonts, wh'ch vets solved numerically. The mp iffied via a Calex Model 176 Instrument
solution reaches a stationary state after a tran- Amplifier Figure (4) showe a schematic diagram of
giant period and exhibits the sowe nonlinear the instrumentation used in this investigation.
Interaction as predicted by the Gaussian closure The acceleration of the shaker platform is mesoured
solution. Figure (3) shows the stationary mean by a PCS Piexotronic Model 302A02 shock accelerome-square response of the normal coordinates against ter. The accelerometer is powered by a PCB
the internal detuning parameter. Piezotronic Modal 48OCO6 power unit.

Although the two approaches yielded common features The first two normal mode, frequencies of the system
to those predicted by deterministic theory

5 
of are determined theoretically and measured experie-nonlinear vibration such as eutoparameric sup- ntally as a function of the boes length ratio z A1

pression effect, the random analysis did not verify at shown In fig. (5). This figure shows that 
2
thls

internal resonance . A.. - 2 is obtained in two
locations of the leiigth 

1
ratio. At these mess

locations the normal mode frelquencies are:

Fig. (4) Arrangement of experimlental equipment Fig. (S) Measured and theoretical frequency ratio
of the first two normal modes.
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/ 0.498: f, - 9. 1 N. f - 1.2 ux (5a) t0 004tv. This reselution is analogous to a dsf-
2 2 lactioen of the horizontal boom been of -0 OOO?3-in

Med the vertical of +0 0009?-in and an acceleration
Z 2 /t 1 0.707. fI - 7.,45 Hz. f, - 14,9 HI (5b) of 0 00d-S for the excitation

The experimental model is tested under various

The analog signals of the excitation and responses levels of excitation spectral density Thie is
are read and converted into binary numbers using a achieved by keeping the input eignal level constant
Data Translation adel DT-3752 Intelligent Analog (Nster Gain on Ling Amplifier) for the range of
Peripheral (LAP). This LAP is capable of reading internal detning of the odel The level of
either I channels (+10v) or 16 channels (0-10) of mlification is adjusted to five levels for te-
input It can also iead and convert analog signals ting of both the first and second noreal frequency
at up to 40k points per Second This :nit is bendsidthe Another series of tests are conducted
meounted in an expansion slot of an ISn Systee 9001 for excltatla spectral density that covers both
Senchtop Computer. The control and programming of normel mode frequencies.
the Analog/Digital (A/D) systsm are accomplished
through the software controlled registers and field II_2 mrtmareta haArs
selectable (hardware) options. The software con-
trolled registers are the control registers, statue The experimental results include sample records of
register, and gain/channel register The control tism history responses and the "an square respon-
register controls the operation and eode of the A/D see in term of generalized coordinates and normal
system. The modes which are used in this tnvesti- coordinates. The msn square response will be rep-
gation are direct memory transfer and increment resented against the internal detuning parameter r
mode operation. Direct memory transfer places and the excitation spectral density level The
converted data directly into the memory of the bandwidth of the random excitation depends on the
computer. The increment mode allows the A/D to mode under investigation
increment the input channel number automatically
before each 4/0 conversion. This allows data to he
taken from sequential channels without requiring a Tl 2_1 Fert Nde r-cirAt~on
program to specify each channel, The statue regis-
ter reports the complete status of the A/D system The first mode is excited by a limited bandwidth
during the operation The gain/channel register rendom excitation of bandwidth 5Ht and a central
selects the desired channeals from which the data is frequency very close to the first normal mode natu-
to be taken and sets a programmable gain for all ral frequency. The frequency content of this ran-
input signals. This gain is set to one for all doe process is selected such that it does not
tests. The computer controls the DT-3752 through a excite any higher structural modes. For the five
Fortran program. Analog signals ars converted for levels of excitation spectral density, the system
a specified amount of time or until the computer response is governed mainly by the first mode which
mmory is full. When the computer has completed does not shoe any nonlinear coupling Figure (6)
collecting date, the data is transferred to a flop- show a sale of the time history respqnse under
py disk for future processing. excitation spectral level S.- 0 0142 (g /Hz) when

the model is internally tuned to the resonance
The data processing is performed at equally spaced condition / -2.0. It is seen that the response
intervals. The problem of determining this time is characterizid by a narrow band random process of
interval is well discussed in gendat and Piersol15 frequency close to the first normal mode - 7.5 Hz.
Generslly, if sampling is prepared at points which
are too close together, it will yield correlated
and redundant data. This will unnecessarily in-
cress* the labor and cost of calculations. Sam-
pling at points which are too far will lead to the qn
problem of aliasing. The aliasing is mainly a
confusion between the low and high frequency tempo- t
nents in the original dat. In order to eliminate
the problem of lchasing, a sampling rate should be , %-
chosen to be at least two time the maximun frequen-
cy that the model will experience In order to get 4
Sgood sample date, a sampling rate is chosen which

is roughly eight times the maximm frequency In
the present investigation, the sampling rate is log

chosen to be 80 Hz per channel for the first mode|

excitation snd 160 h per channel for the second
mode and wide bend excitation. Data processing
involves another problem known e qu ntization
which is the conversion of data values at the Fig (6) Time history response of first normal mode

ampling points into digital form. The infinite excitation, level V. S,- 0.0142 f/t.

number of values of the continuus analog signal
must be approximated by a fixed set of digital
levels. A choice between two consecutive levels
will be required because the scale is finite The Figure (7a) shom the moan square response of the
accuracy of the approximating process is a function generalized coordinates for the some excitation
of the available levels which is dependent upon the spectral density level of fig. (6). The empry
mlog to digital converter resolution. The eccu- points are measured when the ms of the vertical
recy of the UT-3752 is the value of the least ho *ves upmard while the full points are
significant bit which corresponds to a voltage of obtained when the mess moves downward. both groups
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Fig (78) Mean square responses of generalized
coordinates uader first norml Wod
exci4tation.

0•• • o•Fiag (84) Re~lationship boerishaen square

• * responses of generalized coordinates

various values of internal detuning.

Fig
s  

(7b) Keen square response of normal .

coordinates under first nr~mal made ,mai

Excitation level V: So"- 0 0142 g /H2, empty points -f

Sor respond C hlhr positlO n of tha upper "as while

full points correspond lower position

are measured in the neighborhood of the system
internl resonance. The group of full points indi-

hae tht the man squa re of the horizontal born
lator.aseo while the um square of the vertical -A
bom d creases as the norml .d frquecy rat is saw

/ L-rea:s. This Implies that the model
h~ Ike I sngle degree-of-fredm system for4

2 For th second group of results (empaty

points) the man square respoi h of the vertical
bom increases and the s aee squar n of thn hdrtzon-

to, boom docrees This featr is beong~ing to
the chcectsitTic2 of linear vibration absorbers I 'to inertia coupliou. The correspoodinf respof-t.nl
I )curves !n hem l coordinates are shown in fi

The h quote points (emty or full) rm a elen-
Sinn to the first noomrl mode hich siously
dominate* the response. it to also soon that u .a %
the srticalh eeroii downoard, the pe starts a
to ehave cors linear sin on dgro-*E.fre
scsthm hohe n square is thven by th e rolation-
shi7 Fhie, (hb) Relatioship botfeth rmt squat*

responses of noramal coordinates and
21 _For 2 the excstction sgoctral oreuity for

Elypn (6) vrio values of intreposl detohinft.

(beee rinrese area thkma for losar position of oho(reb) Th squa r are the mpy o natural frebeny upr mas).
nd doine ratio of the systwhi rcepo ti ly, 2D

de- - -in ece the resp~nse. It s also MSlhr a a 55 55 '8



is the excitation spectral density of a wide band
random excitation. mkL ig.a.
It is clear that the trend of the full square
points agrees with the linear solution (6) that the

mean square response is inversely proportional to
the cube of the first normal mode frequency

t po- statistics, tho ea square response is I~ i. 1 L1 ~~L M td 1
lvlashown in fi.(a vo arioua valuas of
Inenldatunlng. It Is seen that the mean -

squares of the two beams increase with the excite-* *

tion Spec tral density up to a certain level above Fig (9a) Time history response of second soda
wh Ich the curves are discontinuous. The degree of excitation under esVItation spectral
discontinuity dpends on the internal deruning. density of 0 022 g 'Ait
Any deviation from the exact internal detuning
results in a strong discontinuity This disconti-
nuity means that the system is unstable in the man

square sense. Similar features were reported in
the deterministic response of the same system by
Haddow, et &1 5 The location of discontinuity is
strongly dependent on the values of damping ratios
and theitradtuigoth structure Figure A A AAAA )A A
(6b) shoa sethemoansquare fresponse of the normal V "V V~VV *

coordinates against the excitation spectral dansi-
ty The curves have the same trend of f is (SAl

M-12 2 Second 32d, F-itration

random excitation of bandwidth 5 lix and central

frequency very close to the second normal mode

frequency, Five levels og excitation 1pectral Fig (9b) Kagnification of time history response of

density ranging from 0.001 g/H'z to 0.022 g /11* are second mode excitation showing attendance

selected. A general feature of the time history of first normal mods

response records is that both amplitudes q1 and
increase with the levels of excitation as Iin the

first mode excitation. The records elso show that .- "%N~

for all selected beae length ratios and for all .tt"

levels of excitation spectral density. the vert ical W
bae" amplitude q is always greater than the hori-
zontal bae" amplijude %~. Another Observation is4
that when the excitatiot level is held constant theI
amplitudes q and q, increase slightly as the beam4

length ratio Increases., For small levels of 9cxci-
tation spectral density, the second normal mode is- 0 *

observed to have no interaction with the firer I, *

mode. However, above a certain level of excitation .. ... . .spectral density, it is found that the first mode
appears for a certain period of time and then e ~ ~ . . *

disappears as the second mode takes over, And so On
as shown in fig. (9a). This nonlinear interaction Fig (10a) Rean square responses of generalized

Of the two normal mode is more clarified roordlngres under second normal mode

in fig.5 (9b). Under harmonicexcitation. Readdow, excitation
et al. reported similar onergy exchange between__________
the two modes. Furthermore, it was shown that the -e
directly excited mode becomes saturated and energy - * *

is transferred to the first mode. In the present ONO'
inwetigation. the enery transfer takes place not
only .aider high leoels of excitation spectral den-
sity but aleo *Ien the the internal reoane is
approaching the value 2 as vertical bea length is.
Increasing.

The "ean square responses of the generalized and
normel coordinates are plotted against the internal * . . . . .

detimiing parameter r in figs. (10a) and (l0b).
respectively. The suppression effect of the i. 12ns s- _

excited mode takes place ORLY when the vertical
mess is moved downward as shown in fig. (l0b) by
the full triangular pots. The second mode soon Fig. (l0b) Neow equarO rOePOnse Of normal
square (amty triomgplar points) Increases with a coordinates under second normal mode

correspondIng decresase In the first mode mean excitation.
square (sthe vertical mesa moves upward).-



4 ,o Figures (lIla) and (lb) show the influence of the
excitation spectral density on the normal mode

* man square responses of the &oneralixed and normal
coordinates. respectively. Figure (lib) indicates
that the second normal mode mean square is relati-

vely smaller than the first normal mode mean square

response. This suppression effect is due to the

nonlinear normal mode interaction. However. the

saturation phenomenon, known in deterministic eye-
tems with quadratic nonlinearity, is not pronounced

in the present results since the excitation is a
random process which contains several frequencies

each of which may excite the two modes. In deter-
ministic excitation, the external and internal

detunings are very important in establishing the

saturation phenomenon.

III 2 3 TWO MIO FXCTATION

The purpose of these tests is to explore the beha-

vior of the system under rendom excitation which

covers both normal mode frequencies. Due to the

shaker limitation the tests are conducted under
single excitation spectral density level S - 0.0026
j /Hz. A sample of the time history response

o ,record is shown in fig
. 

(12) which reveals the
presence of the two modes. The amplltude of oscil-

lation of each beam depends on the vertical mass

location which yields the same internel resonance

Fig dl) Relationship between mean square condition. Figures (13a) and (13b) show the depen-
responses of generalized coordinates and dence of the mean square response on the internal
excitation spectral density for various detuning in terms of generalized and normal coordl-
values of internal detuning. nates. respectively The full points reveal linear

response characteristics while the empty points
show a nonlinear interaction between the two modes

-
~IV, CON=1SIOMS AND DISCU]SSION

The results of an experimental investigation of
nonlinear model interaction in a two-degree-of-

freedom structural model under random excitation
are reported. The model equations of motion in-

" clude linear and nonlinear inertia couplings of the.5 generalized coordinates, The normal mode frequen.
• cies -I and 2 of the model are adjuted to meet

the internal resonance condition r - 2.0. This
ofrequency ratio is found to exist at two beam

length ratios Z /E - 0.49 and 0.71. At these
locations the s ste response characteristics are

,s completely different when the model is excited by a

band limited random excitation. Three main series
of tests are conducted to examine the system res-

ponse behavior when the first and second modes are
excited separately and when both modes are excited

simultaneously.

us When the first normal mode is externally excited it

is found that the mean squares of the two modes are
increasing monotonically with excitation spectral

Sdensity. The response-excitation relationship is
. almost linear for smell excitation levels. When

EAN, the two beasm are tuned to the exact internal

resonanes, the response-elicitortion relationship

follows a continuous curve. For different internal

Fig. (Ilb) Relationship between mean square detuning. the response curves exhibit a disconti.

responses of normal coordinates and nuity. This feture is similar to t determinis-

excitation spectral density for various tic characteristics of the em model.

values of internal detuning. When the second normal mode is externally excited,
(Measurements are taken for lower position of the the system response is dominated by the second

normal mode up to an excitation spectral dIe ity
upper s.) level shove which the first emaSl mine attends and

m



deviation from theory is attributed to the fact
that the experimental excitation is a band limited

, random process, while in theory it is represented
I by a wide band ranom process. Another source of

deviation is that the transformation into normal

coordinates is not exact since it does not take

% - "-".-. 11 into account the effect of structural damping. To
I =liminate this problem, it is convenient to adopt

S. other models whose generalized and norm.l coordi-
nateooarethe so . With now equipment ,nd more

e ",powerful shakers the first author is cu.rentlv
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Fig. (12) Time history response of two normal modes
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ABSTRACT.

This paper examines the nonlinear interaction of a three-degree-of-f reedom

structural model subjected to a wide band random excitation. The non-

linearity of the system results in different critical regions of internal

resonance which have significant effect on the response statistics. With

reference to combination internal resonance of the suimmed type the system

response is analyzed by using the Fokker-Planck equation approach together

with a non-Gaussian closure scheme. The non-Gaussian closure is based on

the cumulant properties of order greater than three. As a first order ap-

proximation the scheme yields 209 first order differential equations in

first through fourth order joint moments of the response coordinates. The

analysis is carried out with the aid of the computer algebra software

MACSYMA. The response statistics are determined numerically in the time and

frequency (internal detuning) domains. Contrary to the Gaussian closure

scheme the non-Gaussian closure solution yields a strictly stationary res-

ponse in addition to a number of complex response characteristics not pre-

viously reported in the literature of the area of nonlinear random vibra-

tion. These include multiple solutions and jump phenomena (jump and collap-

se in the response mean squares) at internal detuning slightly shifted from

the exact internal resonance condition. At exact internal resonance the

system response possesses a unique limit cycle in a stochastic sense. The

regions of multiple solutions are defined in terms of system parameters

(damping ratios and nonlinear coupling parameter) and excitation spectral

density level.



I. I)TRD M

The linear modeling of any dynamical system is comonly acceptable as long

as the actual response characteristics to various types of loading follow

the linear solution. However, under certain situations the system may expe-

rience certain complex characteristics that cannot be Justified by the

linear solution. These complex response features owe their origin to the

system inherent nonlinearities. In structural dynamics the nonlinearity may

take one of three classes [1,2]: elastic, inertia, and damping nonlineariti-

es. Elastic nonlinearity stems from nonlinear strain-displacement relations

which are inevitable. Inertia nonlinearity is derived, in Lagrangian formu-

lation, from the kinetic energy. In multi-degree-of-freedom systems the

normal modes may involve nonlinear inertia coupling which may give rise to

what are effectively parametric instability phenomena within the system.

The parametric action is not due to the external loading, as in the case of

parametric vibration, but to the motion of the system itself and, hence, is

described as autoparametric (3]. The main feature of autoparametric coup-

ling is that the motion of one normal mode gives rise to loading of other

modes through time-independent coefficients in the corresponding equation of

1motion. The natural frequencies of the normal modes involved in the autopa-

rametric interaction are usually related by a linear algebraic relationship

known as "internal resonance" condition.

According to the order of nonlinear coupling the system may exhibit certain

types of response phenomena [4,5]. For example, systems with quadratic

nonlinear inertia coupling may experience saturation phenomenon, amplitude

jump, nonlinear resonance absorption effect, and multi-response behavior.

For the case of two degree-of-freedom systems which possess third order



internal resonance condition u, 2w1, it is found that if the second mode is

externally excited it behaves, in the beginning, like a linear single

degree-of-freedom system, and the first mode remains dormant. As the excit-

ation amplitude reaches a certain critical level the first mode becomes

unstable, and the second mode reaches an upper level. This mode is said to

be saturated, and energy is then transferred to the first mode. This feat-

ure has been predicted theoretically and observed experimentally by Haxton

and Barr [6] in their autoparemetric vibration absorber; Nayfeh, at al. :7 ,

and Mok, at al. [8] in ship dynamics involving nonlinear coupling between

pitching and rolling motion; and Haddow, et al. [9] in nonlinear motion of

coupled beams. For three degree-of-freedom systems possessing internal

resonance of the sumd type 3 - w, + a , similar features were reported by

Ibrahim and Woodall [10], Bux and Roberts [111 and Roberts and Zhang "Z-

The response behavior of nonlinear systems under harmonic excitation may :e

changed if the excitation is a random process. The theory of nonlinear

random vibration is not well developed as its deterministic counterpart. The

theory of nonlinear random vibration requires advanced background in the

theory of random processes and stochastic differential equations [13-15].

Few attempts have been made to predict the response statistics of nonlinear

two-degre-of-freedom systems. These include the work of Ibrahim and

Roberts [16,17], Schmidt [18], and Ibrahim and Ho (19,20] who examined the

autoparametric interaction of two freedom systems subjected to wide band

random excitations. The response statistics of these systems share a number

of nonlinear characteristics of deterministic results such as nonlinear

resonance absorption effect. However, the saturation phenomenon did not

take place because the excitation contains a wide range of frequencies which

result in a continuous variation of the external detuning. Recently,

3



Ibrahim and Hedayiti [21] have examined the effect of quadr ic nonlinear

inertia coupling in a three-degree-of-freedom structure subjected to a wide

band random excitation. They used the Fokker-Planck equation approach to-

gether with a Gaussian closure scheme. In the neighborhood of the combina-

tion internal resonance condition. w3 - "1+ w2, the nonlinear interaction

was found to take place between the second and third normal modes at an

internal detuning parameter r - w3/ (w1 + w2 ) - 1.18. At r -1.0 all attemp-

ts converged to the linear random response statistics. The purpose of the

present paper is to employ a non-Gaussian closure scheme which take into

account the effect of the response deviation from normal distribution with

the purpose of exploring three modal nonlinear interaction. For the sake of

completeness a brief review of the results of reference [21] will be given

in section VI. The effect of excitation spectral density level on the res-

ponse characteristics will be examined in section VII.

II. BASIC NWlL AND MOUATIONS 01 NOTICE

Figure 1 shows a schematic diagram of an analytical model of an aircraft

subjected to random excitation F(t). The fuselage is represented by the

main mass i 3 , linear spring k3 and dashpot c3 . Attached to the main mass on

each side are two coupled beams with tip masses ml and m2 , stiffnesses k,

and k2 , and lengths Z1 and Z2. In the analysis of the shown system only the

symmetric motions of the two sides of the model are considered. Under ran-

dom excitation the system response will be described by the generalized

coordinates ql, q2, and q3 as shown in the figure. The equations of motion

are derived by applying Lagrange's equation

d & - I (1)

4



where L = T - V.

The kinetic energy T is given by the expression

T - L 'I~2 [ 2 ), I~ q14 + L '2 + j 1  2

2222 .2 a22 2(2)

3.212 454 + qq 3 +41 q2 q3 + S2 + sq2q3 ++5414
)

where a dot denotes differentiation with reect to timea t. Nellctingl the

gravtational effects, the potential energy V is given by the elastic energy

V - q/(klq1
2 + k2q2

2  
1 k3q3

2) (3)

Substituting for T and V in equation (1) and bypassing energy dissipation

due to damping (damping forces will be introduced later) yields the

equations of motion in terms of the nondimensional coordinates

'12 k 0 0

2L '22 J qj + 10 k'2 0 q
130 s33 qj' 0 0 k3 3

(4)

0 2 q.r
L '

where 4i - qi/q3. T 3 3

'4 is taken as the root-mean-square of the main mass when all other parts

are locked under forced excitation, w3 is taken as the third eigenvalue of

the system, and

5



rol - l +. M2 [ + 2.25(t,/I ) 2 1, ml-- - m2

M33 ml + M2 + M3. 1 1 2 " 1.5m,( /2

M13 ml + m2
0.45 (z /Z,) ( -Z +-,q2 + 5j in

+ 1.5 (0.2q1 I q 2q 3  + 2q2qI + 2

-" 1.5 (o.2qtq- - o.8q- 2 qtq 3 )

+ 1.2( /L2 )(q2 q + q 2 q)

-3 2"Z5(i 2/ L)(qtql £2

+ 1.5(q0q q 1 q2 q Iq) 3

+ 1.2( 1 / 2 )(q2 qj + q2)

wvhere a prime denotes differentiation with respect to the dimensionsioniess

time -r.

III. KIrGDWrAlU AND 1W SAF

The system eigenvalues are determined from the conservative linear part of

the equations of motion

[m]{ ) + (kZ(ql - 1 + 6

the characteristic equation of (6) is

Dmt~tk1 - w2 (m~i - 0 (7)

where the roots of (7) dive the ei nvalus c. of the systd m.

Expanding the determinant gives the cubic equation

6



22  92

11 a22 11 33 33 3" (8,
2 2

.Z2 a a+( )(, - -L-- + G - ] (-,-)
33 11 33 11a 22 33

L. + (-"112~(~2)...M) 2 + 2(',,*) 0
'33 33 33 33 t3 t3 t 3

where the frequency parameters -ii " i/mii are the natural frequencies of

the individual components of the model. The IMSL (International Mathemati-

cal and Statistical Library) subroutine ZPOLR (Zeros of a Polynomial with

real coefficients) is used to find the roots of equation (8). Figure (2)

shows a sample of the dependence of the natural frequency ratio r -W /( ...
3

on the ratios w/W3 and (A w3 for beams of length ratio Z. / 0.25,
13333 11

and mass ratios m2 /m, - 0.5. and m3 /mI - 5.0. The importance of these

curves is to define the critical points where the structure possesses inter-

nal combination resonance r - 1.0. It is seen that the most critical region

is located on the curves belonging to the values of - 22/ - 33 ranging from

1 to 2. For the present analysis the curve corresponding to -221-33 - 1.4

will be adopted. The mode shapes of the model corresponding to the three

eigenvalues which satisfy the internal risonance condition r a 1.0 are eval-

uated by the method of matrix decomposition (22] and are shown in fig. (3).

The eigenvectors of the system will be used in section IV to construct the

modal matrix (R].

IV. TRANSYO3MATIOI DT NOIKAL COORDDIATES

Equations (4) include linear and nonlinear dynamic coupling. It is conveni-

ent to eliminate the linear dynamic coupling by transforming equation (4)

into principal coordinates Yi, by using the transformation

7



(q) u (RI(Y) k9)

where [R] is the modal matrix whose columns are the eigenvectors,

~1 1 l:

[R] - n1  n2 n3, (10)

Rewriting equations (4) in terms of the principal coordinates in the matrix

form

[m](R](Y"} + (k](RI(Y) - (F(T ) ((Y.Y',Y") (11)

Premultiplying equation (11) by the transpose of the modal matrix results in

diagonalizing the mass and stiffness matrices. The resulting equations

involve nonlinear coupling and have the form

0 0 Y

22 2 k22 4
0 0 M3  Yi, 0 k33 J Y3

L '3
wh r 2 F( T/ 

2 (12)

n3F( T/'A)J L '3..
where



m +- 1 + 2(1 + 2 + 36n . + 2n t 
+ hi2+ h2) + [1 + a3/a 1 2  2z

kic - I + (k 2 /k 1 ) n12 + (k3 /k1 ) -n1.

.-Y (Lll¥Y1 
+ 'L12 + L 31 y 3) + Y"2 (L1 1 2y 1 + L 12 2Y 2 + L132 y3 )

+ Y. (L!1 3Yl + L123Y 2 + L 3 3 Y3 ) + Milly
2 + M122yi + M 133yi

+ 4 il2 Tyi2  + "i13i yi + Miy

- M2/21 /-Z/I

Lijk " 0.9a +2.258nk+O.3nk+.5njk+3n j+(1.
2 /)njn k

+ n [0.3 + 1.5% + (1.2/E)n (l+nk)] + n,[2.256 + 1. 5 (nj+nk) + (1.2/)njn K

Mijk - 0.98 + 3(,ijf+tn) + (2. 4 /)njnk -

(j 0 k)

-2.4n + n+i (4.S 3(nJ+n.k ) + (2.4/B)njak]

m 0.45a + 3n 4 (1.2/3) 213)

- 2
- 1.2n 1 + n [2.2 5 3 + 3n. + (L-2/5)n, 2 ]

(j -k - L)

9



V. DIJYUINTIAL 3l TIONS 0 3SPONSE MfITS

The response coordinates can be approximated as a Markov vector if the ran-

dom excitation is represented by a zero mean physical white noise W(-)

having the autocorrelation function

RWaT EfW(T)W(T *Ar)] - ZDd(aT)()

where Zfl is the spectral density and 6( ) is the Dirac delta function.

This modeling is justified as long as the relevant Wong-Zakai [141 coorec-

tion term is preserved. In order to construct the response Markov vector

the acceleration terms involved in the nonlinear functions T must be removed

by successive elimination. In view of the complexity of the equations of

motion the elimination process is performed by using the symbolics manipula-

tion software MACSYMA. Equation (12) takes the new form

Y.i + 2Ciri3Y'i + r13 2Yi . fiW(: ) + g-i(YY'). i - 1,2,3

where linear viscous damping terms have been introduced to account for ener-

gy dissipation, and

2 (k ii/Mi ) (kI/a 1 ) q

r 0 i /3 W(r) - I F( /t)

fl *; /Mt
fi i /Mii

Introducing the transformation into the Markov state vector X

{Yl' Y' l Y21 Y121 Y3 ' Y'3) " (Xl- X2, X3, X4, X5 ' X6} (16)

equation (15) may be written in the standard form of Stratonovich differen-

10



tial equation

dxi - Fi(X,:)d- + Gi.(X.-)d3.(-) (2'

where the white noise W(!) has been replaced by the formal derivative of the

Brownian notion process B(r), i.e.

|7

W(r) - a d(-,)/d a' = 2D

Alternatively, equation (17) may in turn be transformed into the Ito type

equation
1 6 6

dXi [F (X, ). 6 1. G (d
- 2 k.1 " .j(L,) kj ] d

6 t:8)
+ Z Gij(X,',) dBj( )

where the double sumation expression is the called the Won&-Zakai (or Itc)

correction term [14].

The system stochastic Ito equations are

dx, a x2 dT, dx 3 a x4 dT. dx5 a i6dT

dx2  a (2 Ir1 3x2 - r13 x + (2 b l~r 3x2 + r13 
2x1 )(LillxI + L12 1x3 + L 1 3 1x 5)

+ (2 b1  2 r23 4 + b1 r23 
2 x3 )(L11 2xI + L122 x3 + L1 32x5 )

+ (2 b1 &3x + b1x5 )(L1 1 3xI + L12 3x3 + L1 33x5)

24 2 2
+b I[- Mill x 2 _ M 122 x4 - M 133 x 52 _ M 112x 2x 4 - M 123 x4 x6 - M 113 xnx 6 d-

+ {fI + c1 1x1  
+ c.12x3 

+ c1 3x 5 + C1 4xlx 3 
+ c 5x1x5 + c16x3x5

+ c1 7x I + cisx 3 + c19 x5 d3

11



dx4 " (2 r.,x - r2 3 x3 + (2 b," rx, + r x) x L x Lx

+ (2 b2 2 r23x. + b r 3 x3)(L,1 2x1 + L2,,x3 + L2 32 x5 )

+ (2 b2 3 x6 + bx 5 )(L,13 xI + L 2 3x: + L,33 x5 )

2  3 2  52  2 1 223 33 65

2[ 2112 -2 -4 233 x6  M2 12xx 4 6 M 1 3 x2x6 id

+ (f~ + c,, + C + cX 5 x +,
f2 -c 1 3 23 5 4 2X3 251x5 + 26x3x5

+ c27x I+ c28 x3 + c29 x5)dB

dx6  (2 3x6 - x5 + (2 b 13x2 + r132X1)(L 3 1 1xI + L3 2 1x3 + L33 1 x5

+ (2 b3 ,r23x4 + b3r 
2 x3 )(L31 x L x + L33 2x5)

+ (2 b3 3x6 + b3x5 )(L3 13x I + L 323x3 + L 3 3 3x5)

2 2}d2

+ b3 [- M 311x2 - M3 22x4  - M333x6 - M3 12x2 x4 - M323 x4x6 - M3 13x2x 6 1d

+ {f3 + 3 +  32x3 + c33x5 + c34 xlx 3 + c35x,5 + c36 x3 x5

+ c37xI  c38 x3 + c39x5 }dB

(19)

12



where

3 3
ii b i Z~ (b i k L i lk  

k j

b.I -. j3M

3 3- b Z (bk Z f. Li2 bi kl kj.I 3 i2k  k
-
j

3 3c i3 -b i Z (bk 7 f L. L kk-I j 1  i  kj

3 3 3 3c b Z (b Z f L + Z (b f Lk-I j-1 j ilk kl j  k,1 j.1 j  i2k  'kIJ

3 3 3 3b[ Z (b 3 ) : (b f )i5( j- ilk k- i A3j + Lki3 k k lj

3 3 3 3

ci6 "bi( Z (bk Z f. )L2 Lkj + Z (bk 7 f. ]L iL )
k-I j, L  k-i i-I 13k k2j

3
c.7 - - bi  Z f. Li

1 *

3

ci8 - bi Z f. Li2j

3

c.i9 b i Z f i
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The evolution of the probability density of the :oint response coordinates X

is described by the Fokker-Planck equation

;x aj( ,-) p ( , ) P,)

2 1:1 jl x

where p(X,T) is the response joint probability density function, and a iX,--

and b ij(XT) are the first and second incremental moments evaluated as

follows

ai (X,tO)-lJm 0  E( -

,ii

b MT) 1t O E ) li + L-)-x
i j  , E[.Xi( = +&)Xi( ) ,Xj(

In order to construct the Fokker-Planck equation of the present system the

coefficients ai and bi, are evaluated. In view of the complicated analytic-

al manipulations involved in this section and subsequent sections the

MACSYMA programming is used throughout the analysis of this paper. it is

obvious that the system Fokker-Planck equation cannot be solved even for the

stationary case. Instead, one may generate a general first order differen-

tial equation describing the evolution of response joint moments of any

order. This equation is obtained by multiplying both sides of the Fokker-

Planck equation by the scalar function t(X)

.(X) - x klX2k. ... X6
k 6  

IZ

and integrating by parts over the entire state space - < X < +-. The

boundary conditions are used

p(X * -- ) p(X - -) -0 (Z3)

The resulting moment equation is very long and it will not be listed in this

13



paper. However, the general form of this equation is

m'N - FN(ml, '2 , .... , mN, mN+1 ) (24)

In deriving the moment equation the following notation is adopted

mkl,k2 .... k6 '  p(X,t) (X) d.XldX2.*. (25)

Equation (24) constitutes a set of infinite coupled equations. In other

words, the differential equation of order N contains moment terms of order N

and N+1. In reference [21], these equations were closed via a closure

scheme based on the assumption that the response process is very close to a

normal process. However, the system mean square responses revealed that the

nonlinear interaction took place only between two normal modes, instead of

three, although the system was tuned to the combination internal resonance.

In order to clarify this deficiency the system response will be further

examined by a non-Gaussian closure based on the concept of cumulant-neglect.

VI. GAUSSIAN CLOSURE SOLUTION

This section briefly reviews the main results obtained in reference [21] for

the sake of completeness. The moment equations were closed by setting all

third order cumulants to zero, i.e.

3[XiX Xk ] - E[XiXjXk] - ? E[Xi]E[XjXk] + 2E(Xi]E(X.]E[Xk ] ' 0 (26)

where the number over sumation sign refers to the number of terms generated

in the form of the indicated expression without allowing permutation of

indices. Relation (26) is used to obtain expressions for third order momen-

ts in terms of first and second order moments. These expressions are then

used to close the second order moment equations generated from the general

equation (24). In this case one can generate 27 coupled equations in the

14



first (6 equations) and second (21 equations) order moments. The solution

of the closed 27 coupled moment equations is obtained numerically by using

the IMSL DVEIK Subroutine (Runge-Kutta-Verner fifth and sixth numerical

integration method. Depending on the value of internal detuning parameter r

the system response may be reduced to the linear response or may become

quasi-stationary which deviates significantly from the linear solution. The

numerical integration is carried out on the IBM-3081 computer which takes

61.08 seconds CPU time with accuracy 0.ID-06 for the case of quasi-

stationary solution (r - 1.18). Figure (4) presents the transient and

steady-state responses for r a 0.01, c - 0.05, and r - 1.12. The steady

state solution converges to the stationary linear solution derived in

reference [21]. For r - 1.18 the response significantly deviates from the

linear solution. Figures (5) and (6) show the transient and steady state

responses indicated by the dotted curves (G) for excitation spectral density

D/ 3 = 1.0, damping ratios .i 0.01, and nonlinear coupling parameter c =

0.025 and 0.05, respectively. The transient response shows that the autopa-

rametric coupling takes place between the second and third normal modes in a

form of energy exchange. It is seen that the steady state response does not

achieve a stationary value but fluctuates between two limits. The values of

the two limits are divided by the linear solution and the ratios are plotted

against the detuning parameter r as shown in figs. (7) and (8) for two dif-

ferent values of the nonlinear coupling parameter E. The region of autopa-

, rametric interaction is seen to become wider as the nonlinear coupling para-

meter increases and as the damping ratios decrease. These two figures

reveal the fact that the nonlinear interaction takes place within a small

range of internal detuning parameter around r = 1.18 which is well remote

from the exact internal resonance r - 1.0. The authors have made several

15



attempts to determine the response statistics undez the condition of exact

internal resonance r -1.0. However, all nmerical solutions converge to the

linear response and the Gaussian closure fails to predict any nonlinear

interaction between the three modes at r - 1.0. Inspection of the frequency

ratios w3/ x, W3 / 
1 , and w,/Ii shown in fig. (9), reveal that at r *

1.18 the second and third modes are in exact internal resonance, i. e. =

Zw,. If one considers only the equations of motion which govern the non-

linear coupling of the second and third modes with the condition 3 2 ...

the system moment equations are then reduced to 69 equations whose numeric4l

solutions coincides with the response presented in figs. (7) and (8). it is

obvious that the Gaussian closure scheme is not adequate to predict the

nonlinear three modal interaction and this is the main reason for conside-

ring the non-Gaussian closure approach in the next section.

VII. NON-GAUSSIAM CLOSUIESOLUTION

The non-Gaussian closure scheme takes into account the effect of non-

normality of the response probability density and thus is expected to

provide adequate modeling for the system nonlinear random response. As a

first order approximation the third and forth order cumulants will be

considered in the analysis and all higher order cumulants are set to zero.

In this case one has to generate moment equations up to fourth order.

Fifth order moments which appear in the fourth order moment equations will

be replaced by fourth and lower order moments by using the relationship

5

X 5 [XXj XkXZX m E[Xi XjXkXXI - I E[X i]EX XkXLXa]

10 10
+ 2 1 E[X ]E[X ]EXkX X - 6 ' EXi]E[EXj]E[X]E[XX] (27)

15 10

+ 2 EX iE Xk JE[X LXa

+. 2 4 E[Xi]E[X JEfj'E(XtIE(xIj Q
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The number N of moment equations of order K is given by the relationship

( 14]

N - n(n + M)n + 2)... .(n +~ K - 1)/K! (28)

where n is the number of state coordinates X. For the present problem one

needs to generate 6 equations for first order moments, 21 equations for

second order, 56 equations for third order and 126 equations for fourth

order, with a total of 209 first order differential equations which are

closed by using relation (27).

The 209 differential equations are solved by numerical integration by using

the DVERK subroutine on the IBM13081 computer. For one complete time history

response the numerical integration took 748.48 seconds CPU time (i.e. over

12 times the CPU time of the Gaussian closure solution) with accuracy of

0.0D-06. Figures (5) and (6) show the transient and steady state responses

indicated by solid curves (NG) for r -1.18 which corresponds to two-modal

interaction between second and third modes. Again the transient response

shows nonlinear interaction in a form of energy exchange between second and

third normal modes. Contrary to the Gaussian closure solution, it is seen

that the steady state response achieves a strictly stationary solution. The

numerical integration is carried out for the 209 equations at r - 1.0 to

find out if the non-Gaussian closure predicts nonlinear three modal interac-

tion. Figure (10) shows the transient and steady state mean square response

for -0.01, c - 0.05. The CPU time taken for one complete time history

record is 1414 seconds which is much longer than the CPU time for Gaussian

closure solution. The fluctuations observed in the transient response are

entirely dependent on the the initial conditions introduced in the numerical

algorithm. For example all response records obtained with zero initial

conditions do not show any fluctuations in the transient period.
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Since, the non-Gaussian closure scheme yields a stationary solution it is

possible to solve only for the steady state by setting the left hand sides

of the 209 equations to zero and solve the resulting nonlinear algebraic

equations numerically. The numerical solution is carried out by using the

ZSPOW (Solve a System of Nonlinear Equations) subroutine on the IBM-3081

computer. The solution is obtained by assuming initial guessing (approxi-

mate) values for the roots of the equations. Convergence of the solution is

reached when the initial roots are close to the exact solution. The deci-

sion of accepting valid roots is based on two main criteria. The first is

the non-negativeness of the even order moments, and the second is to satisfy

Schwarz's inequality. Another important criterion is the positiveness of

the joint probability density of the response coordinates especially at the

tails. However, in view of the problem complexity the authors did not ins-

pect this criterion. It is noteworthy to mention that once the solution is

obtained for one point, the solution of all subsequent points is generated

with less effort. The CPU time for one point solution varies between 40 and

60 seconds depending on the initial guessing values, with accuracy of

0. 1D-06.

The steady state solution is plotted against the internal detuning parameter

r for various values of system parameters and excitation spectral density

level. Figures (11) through (15) show three- and two-modal nonlinear inter-

actions which occur at r - 1.0 and 1.18, respectively. It is seen that the

regions of autoparametric interaction become wider as the nonlinear coupling

parameter E and excitation level D/21~ increase and as the damping ratios

decrease. For most system and excitation parameters used in fig. (11)

through (14) the two modal interaction is stronger than the three modal

18



interaction. Significant three modal interaction arises for relatively lar-

ger values of the nonlinear coupling parameter E and small damping ratios

as shown in fig. (15).

Since the main objective of this study is to examine the random response

characteristics of three modal interaction, attention is focused on the

response characteristics in the neighborhood of exact internal resonance r

1.0. The mean square responses of the three normal modes are plotted in

figs. (16) through (21) for various values of nonlinear coupling parameter C

and damping ratios ;i.These figures demonstrate the development of complex

response characteristics as the nonlinear coupling parameter increases and

as the damping ratios decrease. The autoparametric interaction occurs

between the three modes in such a manner that the mean square responses of

the first two normal modes is always greater than the linear solution (>1.0)

while it is less for the third normal mode. This means that the nonlinear

interaction takes place between the first and second modes on one hand and

the third mode on the other hand. A new feature of considerable interest is

the contrast in the form of the mean square response curves above the exact

detuning ratio r > 1.0 for a certain combination of system parameters and

excitation level as shown in figs. (18) through (21). This is indicated by

the multiple solutions over a finite portion of the internal detuning para-

meter. At points of vertical tangency the response mean squares exhibit the

jump and collapse phenomena indicated by the arrows AS and CD, respectively,

see fig. (18). Those solutions shown by the upper and lower branches BC and

ADl are verified by numerical integration. However, all numerical integ-

ration attempts made at points very close to the middle branch AC converge

to either the 
upper or lower branches. 

This implies 
that the middle 

solu-
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tic solutions of nonlinear systems. For systems with quadratic non-

linearity, the deterministic theory of nonlinear vibrations predicts similar

phenomena.

The well known saturation phenomenon reported by Nayfeh and Mook [4] does

not take place for dynamic systems with quadratic nonlinearity subjected to

wide band random excitation since the excitation includes a wide range of

frequencies which always excite the system normal modes. The influence of

the excitation spectral density level D/2zi upon the response mean squares

is shown in fig. (22) damping ratios r = 0.002 and coupling parameter E -

0.05. This figure shows that the system has three possible solutions for

the same excitation level only if the internal detuning is slightly shifted

from the exact internal resonance r = 1.0. At points of vertical tangency

the response mean square will experience the jump and collapse phenomena as

shown by the arrows AB and CD, respectively.

Figures (i) through (21) reveal that the region of internal detuning over

which multiple solutions take place is dependent on the nonlinear coupling

parameter and damping ratios of the three normal modes. In order to define

the region of multiple solutions a parametric study is carried out. The

results are shown in fig. (23) which displays a set of regions of multiple

solutions for various values of damping ratios. The threshold value of E*

where the mean square responses bifurcate into multiple solutions is plotted

as a function of damping ratios in fig. (24).
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VIII. CONCLUSIONS

With the advent of computer algebra software, such as .ACSYMA, REDUCE, and

FORMAC, complicated analyses of dynamic systems can be performed with less

human mistakes. In the area of nonlinear oscillations [51 computer symbolic

manipulations are used to derive the basic differential equations of

motion of nonlinear systems and to transfer these equations into principal

coordinates. It is believed that the symbolic computation will be widely

used in the near future to analyze nonlinear systems with large dimensions.

The MACSYMA software is used to analyze the nonlinear random modal inter-

action of a three-degree-of-freedom structural model in the neighborhood of

combination internal resonance of the summed type. The Fokker-Planck equa-

tion approach together with a non-Gaussian closure scheme are used to deter-

mine the response statistics. Contrary to the Gaussian closure scheme

results, the non-Gaussian closure yields several new features of response

characteristics. These include weak and strong three modal interaction,

multiple solutions, and jump phenomena. Multiple solutions only occur over

a finite region of internal detuning parameter which is slightly greater

than the exact internal resonance condition. At exact internal combination

resonance the system possesses a unique stable limit cycle.
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Fig. (1) Schematic diagram of the model.

Fig. (2) Normal mode frequency ratios r w w3/(w w-2 ) versus system
parameters w 1 33 for various of 1111L33.

Fig. (3) Mode shapes corresponding to the combination internal resonance
W3 1 +W 2.

Fig. (4) Transient and steady mean square responses according to Gaussian
closure solutions for .i . 0.01, E - 0.05. and r - 1.12. The
steady state response converges to the stationary linear solution
at r a 1.12.

Fig. (5) Transient (a) and steady state (b) responses according to Gaussian
(G) and non-Gaussian (NG) closure solutions, for i . 0.01,
E - 0.025, ,3/(W ) - 1.18, D/2r - 1.0.

Fig. (6) Transient (a) and steady state (b) responses according to Gaussian
(G) and non-Gaussian (NG) closure solutions, for . 0.01,
c - 0.05, w3/(WI , ) - 1.18, D/2; 3  - 1.0.

Fig. (7) Gaussian closure solution yields two-modal interaction between
second and third normal modes (E - 0.025, i . 0.01, D/2% = 1.3)

Fig. (8) Gaussian closure solution yields two-modal interaction between the
second and third normal modes (c - 0.05, ri . 0.01, D/2r3 = 1.0)

Fig. (9) Frequency ratios of two and three normal modes versus system
parameters for w 22/33 - 1.4, m2 /ml - 0.5, m 3im . 5.0,
z2/Zi - 0.25.

Fig. (10) Non-Gaussian closure of nonlinear three-modal interaction for
0.05, 0.01, D/2;3 - 1.0.

Fig. (11) Non-Gaussian closure solution showing two-modal interaction at
r a 1.18, and weak three-modal interaction at r a 1.0,
for e - 0.025, ,i . 0.01, D/2 3 - 1.0.

Fig. (12) Non-Gaussian closure solution showing two-modal interaction
at r - 1.18, and weak three-modal interaction at r a 1.0,

for c = 0.025, ri . 0.01, D/2 3 - 2.0.
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Fig. (13) Non-Gaussian closure solution showing two-modal interaction at
r - 1.18, and weak three-modal interaction at r - 1.0,
for c - 0.05, .i - 0.01, D/2,3 - 1.0.

Fig. (14) Non-Gaussian closure solution showing two-modal interaction at
r - 1.18, and weak three-modal interaction at r 1.0,
for e - 0.06, Ci . 0.01, D/2 3 - 1.0.

Fig. (15) Non-Gaussian closure solution showing two-modal interaction at
r - 1.18, and three-modal interaction at r - 1.0,
for E - 0.05, ci . 0.003, D/24 - 1.0.

Fig. (16) Non-Gaussian closure solution showing strong three-modal
interaction for E a 0.025, .i - 0.004, D/2; T - 1.0.

Fig. (17) Non-Gaussian closure solution showing strong three-modal
interaction for E - 0.05, .i . 0.004, D/2 3 - 1.0.

Fig. (18) Manifestation of multiple solutions and jump phenomenon in three
modal interaction for E - 0.05, ,i . 0.002, D/2 3 = 1.0.

Fig. (19) Manifestation of multiple solutions and jump phenomenon in three
modal interaction for E - 0.05, i . 0.001, D/2 3 = 1.0.

Fig. (20) Manifestation of multiple solutions and jump phenomenon in three
modal interaction for E - 0.075, ,i . 0.004, D/2 3 - 1.0.

Fig. (21) Development of complex response in the third normal mode mean
square for E - 0.075, .i . 0.002, D/2c3 - 1.0.

Fig. (22) Dependancy of mean square responses on the excitation spectral
density, a region of multiple solutions for - - 0.05, = 0.002.

Fig. (23) Region of multiple solutions for various values of ..

Fig. (24) Threshold value of t above where the mean square responses have
multiple solutions.
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